Improving LLM Attributions with Randomized Path-Integration

Oren Barkan, Yehonatan Elisha, Yonatan Toib, Jonathan Weill, Noam Koenigstein

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

We present Randomized Path-Integration (RPI)-a path-integration method for explaining language models via randomization of the integration path over the attention information in the model.RPI employs integration on internal attention scores and their gradients along a randomized path, which is dynamically established between a baseline representation and the attention scores of the model.The inherent randomness in the integration path originates from modeling the baseline representation as a randomly drawn tensor from a Gaussian diffusion process.As a consequence, RPI generates diverse baselines, yielding a set of candidate attribution maps.This set facilitates the selection of the most effective attribution map based on the specific metric at hand.We present an extensive evaluation, encompassing 11 explanation methods and 5 language models, including the Llama2 and Mistral models.Our results demonstrate that RPI outperforms latest state-of-the-art methods across 4 datasets and 5 evaluation metrics.Our code is available at: https://github.com/rpiconf/rpi.

Original languageEnglish
Title of host publicationEMNLP 2024 - 2024 Conference on Empirical Methods in Natural Language Processing, Findings of EMNLP 2024
EditorsYaser Al-Onaizan, Mohit Bansal, Yun-Nung Chen
PublisherAssociation for Computational Linguistics (ACL)
Pages9430-9446
Number of pages17
ISBN (Electronic)9798891761681
StatePublished - 2024
Event2024 Conference on Empirical Methods in Natural Language Processing, EMNLP 2024 - Hybrid, Miami, United States
Duration: 12 Nov 202416 Nov 2024

Publication series

NameEMNLP 2024 - 2024 Conference on Empirical Methods in Natural Language Processing, Findings of EMNLP 2024

Conference

Conference2024 Conference on Empirical Methods in Natural Language Processing, EMNLP 2024
Country/TerritoryUnited States
CityHybrid, Miami
Period12/11/2416/11/24

Bibliographical note

Publisher Copyright:
© 2024 Association for Computational Linguistics.

Fingerprint

Dive into the research topics of 'Improving LLM Attributions with Randomized Path-Integration'. Together they form a unique fingerprint.

Cite this