TY - GEN
T1 - Improved competitive ratios for submodular secretary problems (extended abstract)
AU - Feldman, Moran
AU - Naor, Joseph
AU - Schwartz, Roy
PY - 2011
Y1 - 2011
N2 - The Classical Secretary Problem was introduced during the 60's of the 20th century, nobody is sure exactly when. Since its introduction, many variants of the problem have been proposed and researched. In the classical secretary problem, and many of its variant, the input (which is a set of secretaries, or elements) arrives in a random order. In this paper we apply to the secretary problem a simple observation which states that the random order of the input can be generated by independently choosing a random continuous arrival time for each secretary. Surprisingly, this simple observation enables us to improve the competitive ratio of several known and studied variants of the secretary problem. In addition, in some cases the proofs we provide assuming random arrival times are shorter and simpler in comparison to existing proofs. In this work we consider three variants of the secretary problem, all of which have the same objective of maximizing the value of the chosen set of secretaries given a monotone submodular function f. In the first variant we are allowed to hire a set of secretaries only if it is an independent set of a given partition matroid. The second variant allows us to choose any set of up to k secretaries. In the last and third variant, we can hire any set of secretaries satisfying a given knapsack constraint.
AB - The Classical Secretary Problem was introduced during the 60's of the 20th century, nobody is sure exactly when. Since its introduction, many variants of the problem have been proposed and researched. In the classical secretary problem, and many of its variant, the input (which is a set of secretaries, or elements) arrives in a random order. In this paper we apply to the secretary problem a simple observation which states that the random order of the input can be generated by independently choosing a random continuous arrival time for each secretary. Surprisingly, this simple observation enables us to improve the competitive ratio of several known and studied variants of the secretary problem. In addition, in some cases the proofs we provide assuming random arrival times are shorter and simpler in comparison to existing proofs. In this work we consider three variants of the secretary problem, all of which have the same objective of maximizing the value of the chosen set of secretaries given a monotone submodular function f. In the first variant we are allowed to hire a set of secretaries only if it is an independent set of a given partition matroid. The second variant allows us to choose any set of up to k secretaries. In the last and third variant, we can hire any set of secretaries satisfying a given knapsack constraint.
UR - http://www.scopus.com/inward/record.url?scp=80052391637&partnerID=8YFLogxK
U2 - 10.1007/978-3-642-22935-0_19
DO - 10.1007/978-3-642-22935-0_19
M3 - ???researchoutput.researchoutputtypes.contributiontobookanthology.conference???
AN - SCOPUS:80052391637
SN - 9783642229343
T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
SP - 218
EP - 229
BT - Approximation, Randomization, and Combinatorial Optimization
T2 - 14th International Workshop on Approximation Algorithms for Combinatorial Optimization Problems, APPROX 2011 and the 15th International Workshop on Randomization and Computation, RANDOM 2011
Y2 - 17 August 2011 through 19 August 2011
ER -