Abstract
We model the long-term evolution of giant planets
accounting for the change in the compositional
gradient with time. Core erosion is modeled by
convective-mixing using both the Ledoux and
Schwarzschild criteria for convection. We find that in
some cases compositional gradients prevent
convective mixing, and as a result, the assumption of
an adiabatic interior is no longer valid. In other cases,
mixing leads to layered-convection, which results in
a stair-like internal structure and a slower cooling [2].
In addition, the process of mixing (if it occurs)
enriches the gaseous envelope in heavy elements
from the core. These have a direct effect on the
planetary evolution, and therefore on the planetary
radius and luminosity. We suggest that the memory
of the primordial internal structure remains even after
billions of years.
accounting for the change in the compositional
gradient with time. Core erosion is modeled by
convective-mixing using both the Ledoux and
Schwarzschild criteria for convection. We find that in
some cases compositional gradients prevent
convective mixing, and as a result, the assumption of
an adiabatic interior is no longer valid. In other cases,
mixing leads to layered-convection, which results in
a stair-like internal structure and a slower cooling [2].
In addition, the process of mixing (if it occurs)
enriches the gaseous envelope in heavy elements
from the core. These have a direct effect on the
planetary evolution, and therefore on the planetary
radius and luminosity. We suggest that the memory
of the primordial internal structure remains even after
billions of years.
Original language | American English |
---|---|
DOIs | |
State | Published - 2014 |
Externally published | Yes |
Event | European Planetary Science Congress 2014 - Cascais, Portugal Duration: 7 Sep 2014 → … https://www.epsc2014.eu/ |
Conference
Conference | European Planetary Science Congress 2014 |
---|---|
Country/Territory | Portugal |
City | Cascais |
Period | 7/09/14 → … |
Internet address |