Feasibility study of parameter estimation of random sampling jitter using the bispectrum

Ilan Sharfer, Hagit Messer

Research output: Contribution to journalArticlepeer-review

Abstract

An actual sampling process can be modeled as a random process, which consists of the regular (uniform) deterministic sampling process plus an error in the sampling times which constitutes a zero-mean noise (the jitter). In this paper we discuss the problem of estimating the jitter process. By assuming that the jitter process is an i.i.d. one, with standard deviation that is small compared to the regular sampling time, we show that the variance of the jitter process can be estimated from the nth order spectrum of the sampled data, n=2, 3, i.e., the jitter variance can be extracted from the 2nd-order spectrum or the 3rd-order spectrum (the bispectrum) of the sampled data, provided the continuous signal spectrum is known. However when the signal skewness exceeds a certain level, the potential performance of the bispectrum-based estimation is better than that of the spectrum-based estimation. Moreover, the former can also provide jitter variance estimates when the continuous signal spectrum is unknown while the latter cannot. This suggests that the bispectrum of the sampled data is potentially better for estimating any parameter of the sampling jitter process, once the signal skewness is sufficiently large.

Original languageEnglish
Pages (from-to)435-453
Number of pages19
JournalCircuits, Systems, and Signal Processing
Volume13
Issue number4
DOIs
StatePublished - Dec 1994
Externally publishedYes

Fingerprint

Dive into the research topics of 'Feasibility study of parameter estimation of random sampling jitter using the bispectrum'. Together they form a unique fingerprint.

Cite this