Experimental and numerical investigation of iron-doped flames: FeO formation and impact on flame temperature

Monika Nanjaiah, Anita Pilipodi-Best, Matthieu R. Lalanne, Peter Fjodorow, Christof Schulz, Sergey Cheskis, Andreas Kempf, Irenaeus Wlokas, Igor Rahinov

Research output: Contribution to journalConference articlepeer-review

Abstract

Gas-phase iron compounds strongly affect the flame structure already at very low concentrations, which implies the control of combustion efficiency, pollution formation, and materials synthesis in flames. The impact of iron pentacarbonyl on low-pressure premixed flames was investigated experimentally and numerically for a broad range of equivalence ratios. The burner was operated in top-to-bottom orientation, causing a strong effect of buoyancy on the flow field, a configuration, also known as buoyancy-opposed flame. The application of ultra-sensitive broadband intracavity laser absorption diagnostics enabled path-integrated measurements of gas-phase FeO in the particle-laden flow. Spatially-resolved temperature distributions were measured via OH laser-induced fluorescence. The measurements were complemented by detailed simulations of the down-firing flame to determine the (one-dimensional) flow field on the centerline of the burner. The experimental findings were the basis for extension of existing reaction schemes for iron-doped flames and a new skeletal scheme was proposed. Measured temperatures and normalized FeO concentrations were used to validate both the detailed and the skeletal scheme. The results of the optimization and reduction procedure helped to improve the understanding of the structure of the iron-doped flame and the role of iron-cluster formation in the interaction mechanisms which cause the flame inhibition or promotion by iron-compounds.

Original languageEnglish
Pages (from-to)1249-1257
Number of pages9
JournalProceedings of the Combustion Institute
Volume38
Issue number1
DOIs
StatePublished - 2021
Event38th International Symposium on Combustion, 2021 - Adelaide, Australia
Duration: 24 Jan 202129 Jan 2021

Bibliographical note

Funding Information:
We gratefully acknowledge the financial support by the German Research Foundation , DFG, within SPP 1980 (project 375692188 ) and the Israel Science Foundation , ISF (grant No. 2187/19 ).

Keywords

  • FeO
  • Flame synthesis
  • ICAS
  • Kinetics modeling
  • LIF

Fingerprint

Dive into the research topics of 'Experimental and numerical investigation of iron-doped flames: FeO formation and impact on flame temperature'. Together they form a unique fingerprint.

Cite this