Evolutionary transitions in learning and cognition

Simona Ginsburg, Eva Jablonka

Research output: Contribution to journalArticlepeer-review


We define a cognitive system as a system that can learn, and adopt an evolutionary-transition-oriented framework for analysing different types of neural cognition. This enables us to classify types of cognition and point to the continuities and discontinuities among them. The framework we use for studying evolutionary transitions in learning capacities focuses on qualitative changes in the integration, storage and use of neurally processed information. Although there are always grey areas around evolutionary transitions, we recognize five major neural transitions, the first two of which involve animals at the base of the phylogenetic tree: (i) the evolutionary transition from learning in non-neural animals to learning in the first neural animals; (ii) the transition to animals showing limited, elemental associative learning, entailing neural centralization and primary brain differentiation; (iii) the transition to animals capable of unlimited associative learning, which, on our account, constitutes sentience and entails hierarchical brain organization and dedicated memory and value networks; (iv) the transition to imaginative animals that can plan and learn through selection among virtual events; and (v) the transition to human symbol-based cognition and cultural learning. The focus on learning provides a unifying framework for experimental and theoretical studies of cognition in the living world. This article is part of the theme issue 'Basal cognition: multicellularity, neurons and the cognitive lens'.

Original languageEnglish
Article number20190766
JournalPhilosophical Transactions of the Royal Society B: Biological Sciences
Issue number1821
StatePublished - 29 Mar 2021

Bibliographical note

Publisher Copyright:
© 2021 The Author(s).


  • associative learning
  • epigenetic learning
  • neural cognition


Dive into the research topics of 'Evolutionary transitions in learning and cognition'. Together they form a unique fingerprint.

Cite this