TY - JOUR
T1 - Evolutionary transitions in learning and cognition
AU - Ginsburg, Simona
AU - Jablonka, Eva
N1 - Publisher Copyright:
© 2021 The Author(s).
PY - 2021/3/29
Y1 - 2021/3/29
N2 - We define a cognitive system as a system that can learn, and adopt an evolutionary-transition-oriented framework for analysing different types of neural cognition. This enables us to classify types of cognition and point to the continuities and discontinuities among them. The framework we use for studying evolutionary transitions in learning capacities focuses on qualitative changes in the integration, storage and use of neurally processed information. Although there are always grey areas around evolutionary transitions, we recognize five major neural transitions, the first two of which involve animals at the base of the phylogenetic tree: (i) the evolutionary transition from learning in non-neural animals to learning in the first neural animals; (ii) the transition to animals showing limited, elemental associative learning, entailing neural centralization and primary brain differentiation; (iii) the transition to animals capable of unlimited associative learning, which, on our account, constitutes sentience and entails hierarchical brain organization and dedicated memory and value networks; (iv) the transition to imaginative animals that can plan and learn through selection among virtual events; and (v) the transition to human symbol-based cognition and cultural learning. The focus on learning provides a unifying framework for experimental and theoretical studies of cognition in the living world. This article is part of the theme issue 'Basal cognition: multicellularity, neurons and the cognitive lens'.
AB - We define a cognitive system as a system that can learn, and adopt an evolutionary-transition-oriented framework for analysing different types of neural cognition. This enables us to classify types of cognition and point to the continuities and discontinuities among them. The framework we use for studying evolutionary transitions in learning capacities focuses on qualitative changes in the integration, storage and use of neurally processed information. Although there are always grey areas around evolutionary transitions, we recognize five major neural transitions, the first two of which involve animals at the base of the phylogenetic tree: (i) the evolutionary transition from learning in non-neural animals to learning in the first neural animals; (ii) the transition to animals showing limited, elemental associative learning, entailing neural centralization and primary brain differentiation; (iii) the transition to animals capable of unlimited associative learning, which, on our account, constitutes sentience and entails hierarchical brain organization and dedicated memory and value networks; (iv) the transition to imaginative animals that can plan and learn through selection among virtual events; and (v) the transition to human symbol-based cognition and cultural learning. The focus on learning provides a unifying framework for experimental and theoretical studies of cognition in the living world. This article is part of the theme issue 'Basal cognition: multicellularity, neurons and the cognitive lens'.
KW - associative learning
KW - epigenetic learning
KW - neural cognition
UR - http://www.scopus.com/inward/record.url?scp=85101000799&partnerID=8YFLogxK
U2 - 10.1098/rstb.2019.0766
DO - 10.1098/rstb.2019.0766
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 33550955
AN - SCOPUS:85101000799
SN - 0962-8436
VL - 376
JO - Philosophical Transactions of the Royal Society B: Biological Sciences
JF - Philosophical Transactions of the Royal Society B: Biological Sciences
IS - 1821
M1 - 20190766
ER -