Abstract
'Frontalization' is the process of synthesizing frontal facing views of faces appearing in single unconstrained photos. Recent reports have suggested that this process may substantially boost the performance of face recognition systems. This, by transforming the challenging problem of recognizing faces viewed from unconstrained viewpoints to the easier problem of recognizing faces in constrained, forward facing poses. Previous frontalization methods did this by attempting to approximate 3D facial shapes for each query image. We observe that 3D face shape estimation from unconstrained photos may be a harder problem than frontalization and can potentially introduce facial misalignments. Instead, we explore the simpler approach of using a single, unmodified, 3D surface as an approximation to the shape of all input faces. We show that this leads to a straightforward, efficient and easy to implement method for frontalization. More importantly, it produces aesthetic new frontal views and is surprisingly effective when used for face recognition and gender estimation.
Original language | English |
---|---|
Title of host publication | IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2015 |
Publisher | IEEE Computer Society |
Pages | 4295-4304 |
Number of pages | 10 |
ISBN (Electronic) | 9781467369640 |
DOIs | |
State | Published - 14 Oct 2015 |
Event | IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2015 - Boston, United States Duration: 7 Jun 2015 → 12 Jun 2015 |
Publication series
Name | Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition |
---|---|
Volume | 07-12-June-2015 |
ISSN (Print) | 1063-6919 |
Conference
Conference | IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2015 |
---|---|
Country/Territory | United States |
City | Boston |
Period | 7/06/15 → 12/06/15 |
Bibliographical note
Publisher Copyright:© 2015 IEEE.