Deep, Landmark-Free FAME: Face Alignment, Modeling, and Expression Estimation

Feng Ju Chang, Anh Tuan Tran, Tal Hassner, Iacopo Masi, Ram Nevatia, Gérard Medioni

Research output: Contribution to journalArticlepeer-review


We present a novel method for modeling 3D face shape, viewpoint, and expression from a single, unconstrained photo. Our method uses three deep convolutional neural networks to estimate each of these components separately. Importantly, unlike others, our method does not use facial landmark detection at test time; instead, it estimates these properties directly from image intensities. In fact, rather than using detectors, we show how accurate landmarks can be obtained as a by-product of our modeling process. We rigorously test our proposed method. To this end, we raise a number of concerns with existing practices used in evaluating face landmark detection methods. In response to these concerns, we propose novel paradigms for testing the effectiveness of rigid and non-rigid face alignment methods without relying on landmark detection benchmarks. We evaluate rigid face alignment by measuring its effects on face recognition accuracy on the challenging IJB-A and IJB-B benchmarks. Non-rigid, expression estimation is tested on the CK+ and EmotiW’17 benchmarks for emotion classification. We do, however, report the accuracy of our approach as a landmark detector for 3D landmarks on AFLW2000-3D and 2D landmarks on 300W and AFLW-PIFA. A surprising conclusion of these results is that better landmark detection accuracy does not necessarily translate to better face processing. Parts of this paper were previously published by Tran et al. (2017) and Chang et al. (2017, 2018).

Original languageEnglish
Pages (from-to)930-956
Number of pages27
JournalInternational Journal of Computer Vision
Issue number6-7
StatePublished - 1 Jun 2019

Bibliographical note

Publisher Copyright:
© 2019, Springer Science+Business Media, LLC, part of Springer Nature.


  • 3D face modeling
  • Face alignment
  • Facial expression estimation
  • Facial landmark detection


Dive into the research topics of 'Deep, Landmark-Free FAME: Face Alignment, Modeling, and Expression Estimation'. Together they form a unique fingerprint.

Cite this