Covering Uncommon Ground: Gap-Focused Question Generation for Answer Assessment

Roni Rabin, Alexandre Djerbetian, Roee Engelberg, Lidan Hackmon, Gal Elidan, Reut Tsarfaty, Amir Globerson

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Human communication often involves information gaps between the interlocutors. For example, in an educational dialogue, a student often provides an answer that is incomplete, and there is a gap between this answer and the perfect one expected by the teacher. Successful dialogue then hinges on the teacher asking about this gap in an effective manner, thus creating a rich and interactive educational experience. We focus on the problem of generating such gap-focused questions (GFQs) automatically. We define the task, highlight key desired aspects of a good GFQ, and propose a model that satisfies these. Finally, we provide an evaluation by human annotators of our generated questions compared against human generated ones, demonstrating competitive performance.

Original languageEnglish
Title of host publicationShort Papers
PublisherAssociation for Computational Linguistics (ACL)
Pages215-227
Number of pages13
ISBN (Electronic)9781959429715
StatePublished - 2023
Externally publishedYes
Event61st Annual Meeting of the Association for Computational Linguistics, ACL 2023 - Toronto, Canada
Duration: 9 Jul 202314 Jul 2023

Publication series

NameProceedings of the Annual Meeting of the Association for Computational Linguistics
Volume2
ISSN (Print)0736-587X

Conference

Conference61st Annual Meeting of the Association for Computational Linguistics, ACL 2023
Country/TerritoryCanada
CityToronto
Period9/07/2314/07/23

Bibliographical note

Publisher Copyright:
© 2023 Association for Computational Linguistics.

Fingerprint

Dive into the research topics of 'Covering Uncommon Ground: Gap-Focused Question Generation for Answer Assessment'. Together they form a unique fingerprint.

Cite this