Abstract
A complete partition of a graph G is a partition of V(G) such that any two classes are connected by an edge. Let cp(G) denote the maximum number of classes in a complete partition of G. This measure was defined in 1969 by Gupta [18], and is known to be NP-hard on several classes of graphs. We obtain the first, and essentially tight, lower and upper bounds on the approximability of this problem. We show that there is a randomized polynomial-time algorithm that given a graph G produces a complete partition of size Ω(cp(G)/ √lg | V (G)|). This algorithm can be derandomized. We show that the upper bound is essentially tight: there is a constant C > 1, such that if there is a randomized polynomial-time algorithm that for all large n, when given a graph G with n vertices produces a complete partition into at least C · cp(G)/ √lg n classes, then NP ⊆ RTime(n O(lg lg n)). The problem of finding a complete partition of a graph is thus the first natural problem whose approximation threshold has been determined to be of the form θ((lg n) c) for some constant c strictly between 0 and 1.
Original language | English |
---|---|
Pages | 860-869 |
Number of pages | 10 |
State | Published - 2005 |
Externally published | Yes |
Event | Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms - Vancouver, BC, United States Duration: 23 Jan 2005 → 25 Jan 2005 |
Conference
Conference | Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms |
---|---|
Country/Territory | United States |
City | Vancouver, BC |
Period | 23/01/05 → 25/01/05 |