TY - JOUR

T1 - Comparing apples and oranges

T2 - Query trade-off in submodular maximization

AU - Buchbinder, Niv

AU - Feldman, Moran

AU - Schwartz, Roy

N1 - Publisher Copyright:
© 2016 INFORMS.

PY - 2017/5

Y1 - 2017/5

N2 - Fast algorithms for submodular maximization problems have a vast potential use in applicative settings, such as machine learning, social networks, and economics. Though fast algorithms were known for some special cases, only recently such algorithms were considered in the general case of maximizing a monotone submodular function subject to a matroid independence constraint. The known fast algorithm matches the best possible approximation guarantee, while trying to reduce the number of value oracle queries the algorithm performs. Our main result is a new algorithm for this general case that establishes a surprising trade-off between two seemingly unrelated quantities: the number of value oracle queries and the number of matroid independence queries performed by the algorithm. Specifically, one can decrease the former by increasing the latter, and vice versa, while maintaining the best possible approximation guarantee. Such a trade-off is very useful since various applications might incur significantly different costs in querying the value and matroid independence oracles. Furthermore, in case the rank of the matroid is O(nc), where n is the size of the ground set and c is an absolute constant smaller than 1, the total number of oracle queries our algorithm uses can be made to have a smaller magnitude compared to that needed by the current best known algorithm. We also provide even faster algorithms for the well-studied special cases of a cardinality constraint and a partition matroid independence constraint, both of which capture many real-world applications and have been widely studied both theoretically and in practice.

AB - Fast algorithms for submodular maximization problems have a vast potential use in applicative settings, such as machine learning, social networks, and economics. Though fast algorithms were known for some special cases, only recently such algorithms were considered in the general case of maximizing a monotone submodular function subject to a matroid independence constraint. The known fast algorithm matches the best possible approximation guarantee, while trying to reduce the number of value oracle queries the algorithm performs. Our main result is a new algorithm for this general case that establishes a surprising trade-off between two seemingly unrelated quantities: the number of value oracle queries and the number of matroid independence queries performed by the algorithm. Specifically, one can decrease the former by increasing the latter, and vice versa, while maintaining the best possible approximation guarantee. Such a trade-off is very useful since various applications might incur significantly different costs in querying the value and matroid independence oracles. Furthermore, in case the rank of the matroid is O(nc), where n is the size of the ground set and c is an absolute constant smaller than 1, the total number of oracle queries our algorithm uses can be made to have a smaller magnitude compared to that needed by the current best known algorithm. We also provide even faster algorithms for the well-studied special cases of a cardinality constraint and a partition matroid independence constraint, both of which capture many real-world applications and have been widely studied both theoretically and in practice.

KW - Approximation algorithm

KW - Matroid

KW - Submodular maximization

UR - http://www.scopus.com/inward/record.url?scp=85019027676&partnerID=8YFLogxK

U2 - 10.1287/moor.2016.0809

DO - 10.1287/moor.2016.0809

M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???

AN - SCOPUS:85019027676

SN - 0364-765X

VL - 42

SP - 308

EP - 329

JO - Mathematics of Operations Research

JF - Mathematics of Operations Research

IS - 2

ER -