Breaking the Language Barrier: Can Direct Inference Outperform Pre-Translation in Multilingual LLM Applications?

Yotam Intrator, Matan Halfon, Roman Goldenberg, Reut Tsarfaty, Matan Eyal, Ehud Rivlin, Yossi Matias, Natalia Aizenberg

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Large language models hold significant promise in multilingual applications. However, inherent biases stemming from predominantly English-centric pre-training have led to the widespread practice of pre-translation, i.e., translating non-English inputs to English before inference, leading to complexity and information loss. This study re-evaluates the need for pre-translation in the context of PaLM2 models (Anil et al., 2023), which have been established as highly performant in multilingual tasks. We offer a comprehensive investigation across 108 languages and 6 diverse benchmarks, including open-end generative tasks, which were excluded from previous similar studies. Our findings challenge the pre-translation paradigm established in prior research, highlighting the advantages of direct inference in PaLM2. Specifically, PaLM2-L consistently outperforms pre-translation in 94 out of 108 languages. These findings pave the way for more efficient and effective multilingual applications, alleviating the limitations associated with pre-translation and unlocking linguistic authenticity.

Original languageEnglish
Title of host publicationProceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics
Subtitle of host publicationHuman Language Technologies, NAACL 2024
PublisherAssociation for Computational Linguistics (ACL)
Pages829-844
Number of pages16
ISBN (Electronic)9798891761155
DOIs
StatePublished - 2024
Externally publishedYes
Event2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL 2024 - Hybrid, Mexico City, Mexico
Duration: 16 Jun 202421 Jun 2024

Publication series

NameProceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL 2024
Volume2

Conference

Conference2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL 2024
Country/TerritoryMexico
CityHybrid, Mexico City
Period16/06/2421/06/24

Bibliographical note

Publisher Copyright:
© 2024 Association for Computational Linguistics.

Fingerprint

Dive into the research topics of 'Breaking the Language Barrier: Can Direct Inference Outperform Pre-Translation in Multilingual LLM Applications?'. Together they form a unique fingerprint.

Cite this