Attractive Interactions between Heteroallenes and the Cucurbituril Portal

Ofer Reany, Amanda Li, Maayan Yefet, Michael K. Gilson, Ehud Keinan

Research output: Contribution to journalArticlepeer-review


In this paper, we report on the noteworthy attractive interaction between organic azides and the portal carbonyls of cucurbiturils. Five homologous bis-α,-azidoethylammonium alkanes were prepared, where the number of methylene groups between the ammonium groups ranges from 4 to 8. Their interactions with cucurbit[6]uril were studied by NMR spectroscopy, IR spectroscopy, X-ray crystallography, and computational methods. Remarkably, while the distance between the portal plane and most atoms at the guest end groups increases progressively with the molecular size, the β-nitrogen atoms maintain a constant distance from the portal plane in all homologues, pointing at a strong attractive interaction between the azide group and the portal. Both crystallography and NMR support a specific electrostatic interaction between the carbonyl and the azide β-nitrogen, which stabilizes the canonical resonance form with positive charge on the β-nitrogen and negative charge on the β;-nitrogen. Quantum computational analyses strongly support electrostatics, in the form of orthogonal dipole-dipole interaction, as the main driver for this attraction. The alternative mechanism of n a Ï€∗ orbital delocalization does not seem to play a significant role in this interaction. The computational studies also indicate that the interaction is not limited to azides, but generalizes to other isoelectronic heteroallene functions, such as isocyanate and isothiocyanate. This essentially unexploited attractive interaction could be more broadly utilized as a tool not only in relation to cucurbituril chemistry, but also for the design of novel supramolecular architectures.

Original languageEnglish
Pages (from-to)8138-8145
Number of pages8
JournalJournal of the American Chemical Society
Issue number24
StatePublished - 21 Jun 2017

Bibliographical note

Publisher Copyright:
© 2017 American Chemical Society.


Dive into the research topics of 'Attractive Interactions between Heteroallenes and the Cucurbituril Portal'. Together they form a unique fingerprint.

Cite this