Abstract
Let q>p>0, and consider the Nikolskii constants (Formula presented.) where the norm is with respect to normalized Lebesgue measure on the unit circle. We prove that (Formula presented.) where (Formula presented.), and the inf is taken over all entire functions f of exponential type at most π. We conjecture that the lim sup can be replaced by a limit.
Original language | English |
---|---|
Pages (from-to) | 459-468 |
Number of pages | 10 |
Journal | Computational Methods and Function Theory |
Volume | 15 |
Issue number | 3 |
DOIs | |
State | Published - 10 Sep 2015 |
Bibliographical note
Publisher Copyright:© 2015, Springer-Verlag Berlin Heidelberg.
Keywords
- Nikolskii Inequalities
- Paley–Wiener Spaces