Aerosol effects on electrification and lightning discharges in a multicell thunderstorm simulated by the WRF-ELEC model

Mengyu Sun, Dongxia Liu, Xiushu Qie, Edward R. Mansell, Yoav Yair, Alexandre O. Fierro, Shanfeng Yuan, Zhixiong Chen, Dongfang Wang

Research output: Contribution to journalArticlepeer-review


To investigate the effects of aerosols on lightning activity, the Weather Research and Forecasting (WRF) Model with a two-moment bulk microphysical scheme and bulk lightning model was employed to simulate a multicell thunderstorm that occurred in the metropolitan Beijing area. The results suggest that under polluted conditions lightning activity is significantly enhanced during the developing and mature stages. Electrification and lightning discharges within the thunderstorm show characteristics distinguished by different aerosol conditions through microphysical processes. Elevated aerosol loading increases the cloud droplets numbers, the latent heat release, updraft and ice-phase particle number concentrations. More charges in the upper level are carried by ice particles and enhance the electrification process. A larger mean-mass radius of graupel particles further increases non-inductive charging due to more effective collisions. In the continental case where aerosol concentrations are low, less latent heat is released in the upper parts and, as a consequence, the updraft speed is weaker, leading to smaller concentrations of ice particles, lower charging rates and fewer lightning discharges.

Original languageEnglish
Pages (from-to)14141-14158
Number of pages18
JournalAtmospheric Chemistry and Physics
Issue number18
StatePublished - 24 Sep 2021
Externally publishedYes

Bibliographical note

Funding Information:
Acknowledgements. This research was jointly supported by the National Natural Science Foundation of China (grant nos. 41630425, 41875007) and the National Natural Science Foundation of China in collaboration with the Israel Science Foundation (grant no. 41761144074 NSFC-ISF and 2640/17 ISF-NSFC). The authors are thankful for the effort of all the people who participated in coordinated observations of dynamic–microphysical–electrical processes in severe thunderstorms and lightning hazards. Thanks go to the data support from the Ministry of Ecology and Environment of the People’s Republic of China. Thanks go to Jinyuan Xin (State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics, Chinese Academy of Sciences) for the aerosol data analysis. Finally, we wish to thank the editor and four anonymous reviewers for their most helpful comments and suggestions.

Publisher Copyright:
© Copyright:


Dive into the research topics of 'Aerosol effects on electrification and lightning discharges in a multicell thunderstorm simulated by the WRF-ELEC model'. Together they form a unique fingerprint.

Cite this