A pointer network architecture for joint morphological segmentation and tagging

Amit Seker, Reut Tsarfaty

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Morphologically Rich Languages (MRLs) such as Arabic, Hebrew and Turkish often require Morphological Disambiguation (MD), i.e., the prediction of the correct morphological decomposition of tokens into morphemes, early in the pipeline. Neural MD may be addressed as a simple pipeline, where segmentation is followed by sequence tagging, or as an end-to-end model, predicting morphemes from raw tokens. Both approaches are suboptimal; the former is heavily prone to error propagation, and the latter does not enjoy explicit access to the basic processing units called morphemes. This paper offers an MD architecture that combines the symbolic knowledge of morphemes with the learning capacity of neural end-to-end modeling. We propose a new, general and easy-to-implement Pointer Network model where the input is a morphological lattice and the output is a sequence of indices pointing at a single disambiguated path of morphemes. We demonstrate the efficacy of the model on segmentation and tagging, for Hebrew and Turkish texts, based on their respective Universal Dependencies (UD) treebanks. Our experiments show that with complete lattices, our model outperforms all shared-task results on segmenting and tagging these languages. On the SPMRL treebank, our model outperforms all previously reported results for Hebrew MD in realistic scenarios.

Original languageEnglish
Title of host publicationFindings of the Association for Computational Linguistics Findings of ACL
Subtitle of host publicationEMNLP 2020
PublisherAssociation for Computational Linguistics (ACL)
Pages4368-4378
Number of pages11
ISBN (Electronic)9781952148903
StatePublished - 2020
Externally publishedYes
EventFindings of the Association for Computational Linguistics, ACL 2020: EMNLP 2020 - Virtual, Online
Duration: 16 Nov 202020 Nov 2020

Publication series

NameFindings of the Association for Computational Linguistics Findings of ACL: EMNLP 2020

Conference

ConferenceFindings of the Association for Computational Linguistics, ACL 2020: EMNLP 2020
CityVirtual, Online
Period16/11/2020/11/20

Bibliographical note

Publisher Copyright:
© 2020 Association for Computational Linguistics

Fingerprint

Dive into the research topics of 'A pointer network architecture for joint morphological segmentation and tagging'. Together they form a unique fingerprint.

Cite this