TY - JOUR
T1 - A greedy approximation algorithm for the group Steiner problem
AU - Chekuri, Chandra
AU - Even, Guy
AU - Kortsarz, Guy
PY - 2006/1/1
Y1 - 2006/1/1
N2 - In the group Steiner problem we are given an edge-weighted graph G=(V,E,w) and m subsets of vertices {gi}i=1m. Each subset gi is called a group and the vertices in ∪igi are called terminals. It is required to find a minimum weight tree that contains at least one terminal from every group. We present a poly-logarithmic ratio approximation for this problem when the input graph is a tree. Our algorithm is a recursive greedy algorithm adapted from the greedy algorithm for the directed Steiner tree problem [Approximating the weight of shallow Steiner trees, Discrete Appl. Math. 93 (1999) 265-285, Approximation algorithms for directed Steiner problems, J. Algorithms 33 (1999) 73-91]. This is in contrast to earlier algorithms that are based on rounding a linear programming based relaxation for the problem [A polylogarithmic approximation algorithm for the Group Steiner tree problem, J. Algorithms 37 (2000) 66-84, preliminary version in Proceedings of SODA, 1998 pp. 253-259, On directed Steiner trees, Proceedings of SODA, 2002, pp. 59-63]. We answer in positive a question posed in [A polylogarithmic approximation algorithm for the Group Steiner tree problem, J. Algorithms 37 (2000) 66-84, preliminary version in Proceedings of SODA, 1998 pp. 253-259] on whether there exist good approximation algorithms for the group Steiner problem that are not based on rounding linear programs. For every fixed constant ε>0, our algorithm gives an O((log∑i|gi|)1+ε·logm) approximation in polynomial time. Approximation algorithms for trees can be extended to arbitrary undirected graphs by probabilistically approximating the graph by a tree. This results in an additional multiplicative factor of O(log|V|) in the approximation ratio, where |V| is the number of vertices in the graph. The approximation ratio of our algorithm on trees is slightly worse than the ratio of O(log(maxi|gi|) ·logm) provided by the LP based approaches.
AB - In the group Steiner problem we are given an edge-weighted graph G=(V,E,w) and m subsets of vertices {gi}i=1m. Each subset gi is called a group and the vertices in ∪igi are called terminals. It is required to find a minimum weight tree that contains at least one terminal from every group. We present a poly-logarithmic ratio approximation for this problem when the input graph is a tree. Our algorithm is a recursive greedy algorithm adapted from the greedy algorithm for the directed Steiner tree problem [Approximating the weight of shallow Steiner trees, Discrete Appl. Math. 93 (1999) 265-285, Approximation algorithms for directed Steiner problems, J. Algorithms 33 (1999) 73-91]. This is in contrast to earlier algorithms that are based on rounding a linear programming based relaxation for the problem [A polylogarithmic approximation algorithm for the Group Steiner tree problem, J. Algorithms 37 (2000) 66-84, preliminary version in Proceedings of SODA, 1998 pp. 253-259, On directed Steiner trees, Proceedings of SODA, 2002, pp. 59-63]. We answer in positive a question posed in [A polylogarithmic approximation algorithm for the Group Steiner tree problem, J. Algorithms 37 (2000) 66-84, preliminary version in Proceedings of SODA, 1998 pp. 253-259] on whether there exist good approximation algorithms for the group Steiner problem that are not based on rounding linear programs. For every fixed constant ε>0, our algorithm gives an O((log∑i|gi|)1+ε·logm) approximation in polynomial time. Approximation algorithms for trees can be extended to arbitrary undirected graphs by probabilistically approximating the graph by a tree. This results in an additional multiplicative factor of O(log|V|) in the approximation ratio, where |V| is the number of vertices in the graph. The approximation ratio of our algorithm on trees is slightly worse than the ratio of O(log(maxi|gi|) ·logm) provided by the LP based approaches.
KW - Approximation algorithm
KW - Combinatorial
KW - Greedy
KW - Group Steiner problem
KW - Tree
UR - http://www.scopus.com/inward/record.url?scp=27744491021&partnerID=8YFLogxK
U2 - 10.1016/j.dam.2005.07.010
DO - 10.1016/j.dam.2005.07.010
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:27744491021
SN - 0166-218X
VL - 154
SP - 15
EP - 34
JO - Discrete Applied Mathematics
JF - Discrete Applied Mathematics
IS - 1
ER -