A (7/2)-approximation algorithm for guarding orthogonal art galleries with sliding cameras

Stephane Durocher, Omrit Filtser, Robert Fraser, Ali D. Mehrabi, Saeed Mehrabi

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Consider a sliding camera that travels back and forth along an orthogonal line segment s inside an orthogonal polygon P with n vertices. The camera can see a point p inside P if and only if there exists a line segment containing p that crosses s at a right angle and is completely contained in P. In the minimum sliding cameras (MSC) problem, the objective is to guard P with the minimum number of sliding cameras. In this paper, we give an O(n 5/2)-time (7/2)-approximation algorithm to the MSC problem on any simple orthogonal polygon with n vertices, answering a question posed by Katz and Morgenstern (2011). To the best of our knowledge, this is the first constant-factor approximation algorithm for this problem.

Original languageEnglish
Title of host publicationLATIN 2014
Subtitle of host publicationTheoretical Informatics - 11th Latin American Symposium, Proceedings
PublisherSpringer Verlag
Pages294-305
Number of pages12
ISBN (Print)9783642544224
DOIs
StatePublished - 2014
Externally publishedYes
Event11th Latin American Theoretical Informatics Symposium, LATIN 2014 - Montevideo, Uruguay
Duration: 31 Mar 20144 Apr 2014

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume8392 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference11th Latin American Theoretical Informatics Symposium, LATIN 2014
Country/TerritoryUruguay
CityMontevideo
Period31/03/144/04/14

Fingerprint

Dive into the research topics of 'A (7/2)-approximation algorithm for guarding orthogonal art galleries with sliding cameras'. Together they form a unique fingerprint.

Cite this