ملخص
Vibrational overtone excitation is, in general, inefficiently stimulated by photons, but can under some circumstances be efficiently stimulated by electrons. Here, we demonstrate electron mediated vibrational overtone excitation in molecular collisions with a metal surface. Specifically, we report absolute vibrational excitation probabilities to v = 1 and 2 for collisions of NO(v = 0) with a Au(111) surface as a function of surface temperature from 300 to 985 K. In all cases, the observed populations of vibrationally excited NO are near those expected for complete thermalization with the surface, despite the fact that the scattering occurs through a direct ''single bounce'' mechanism of sub-ps duration. We present a state-to-state kinetic model, which accurately describes the case of near complete thermalization (a regime we call the strong coupling case) and use this model to extract state-to-state rate constants. This analysis unambiguously shows that direct vibrational overtone excitation dominates the production of v = 2 and that, within the context of our model, the intrinsic strength of the overtone transition is of the same order as the single quantum transition, suggesting a possible way to circumvent optical selection rules in vibrational pumping of molecules. This result also suggests that previous measurements of vibrational relaxation of highly vibrationally excited NO exhibiting highly efficient multi-quantum jumps (δ v~-8) are mechanistically similar to vibrational excitation of NO(v = 0).
اللغة الأصلية | الإنجليزيّة |
---|---|
الصفحات (من إلى) | 55-61 |
عدد الصفحات | 7 |
دورية | Chemical Science |
مستوى الصوت | 1 |
رقم الإصدار | 1 |
المعرِّفات الرقمية للأشياء | |
حالة النشر | نُشِر - يوليو 2010 |
منشور خارجيًا | نعم |