ملخص
We establish universality limits for measures on a smooth closed contour Γ in the plane. Assume that μ is a regular measure on Γ, in the sense of Stahl, Totik, and Ullmann. Let Γ1 be a closed subarc of Γ, such that μ is absolutely continuous in an open arc containing Γ1, and μ′ is positive and continuous in that open subarc. Then universality for μ holds in Γ1, in the sense that the reproducing kernels (Kn (z, t)) for μ satisfy (Formula Presented) uniformly for z0 ∈ Γ1, and s, t in compact subsets of the complex plane. Here (Formula Presented) is the sinc kernel, and ф is a conformal map of the exterior of Γ onto the exterior of the unit ball.
اللغة الأصلية | الإنجليزيّة |
---|---|
عنوان منشور المضيف | Contemporary Mathematics |
ناشر | American Mathematical Society |
الصفحات | 187-197 |
عدد الصفحات | 11 |
المعرِّفات الرقمية للأشياء | |
حالة النشر | نُشِر - 2016 |
سلسلة المنشورات
الاسم | Contemporary Mathematics |
---|---|
مستوى الصوت | 667 |
رقم المعيار الدولي للدوريات (المطبوع) | 0271-4132 |
رقم المعيار الدولي للدوريات (الإلكتروني) | 1098-3627 |
ملاحظة ببليوغرافية
Publisher Copyright:© 2016 E. Levin, D. S. Lubinsky.