Universal joint morph-syntactic processing: The open university of Israel’s submission to the CoNLL 2017 shared task

Amir More, Reut Tsarfaty

نتاج البحث: فصل من :كتاب / تقرير / مؤتمرمنشور من مؤتمرمراجعة النظراء

ملخص

We present the Open University’s submission (ID OpenU-NLP-Lab) to the CoNLL 2017 UD Shared Task on multilingual parsing from raw text to Universal Dependencies. The core of our system is a joint morphological disambiguator and syntactic parser which accepts morphologically analyzed surface tokens as input and returns morphologically disambiguated dependency trees as output. Our parser requires a lattice as input, so we generate morphological analyses of surface tokens using a data-driven morphological analyzer that derives its lexicon from the UD training corpora, and we rely on UDPipe for sentence segmentation and surface-level tokenization. We report our official macro-average LAS is 56.56. Although our model is not as performant as many others, it does not make use of neural networks, therefore we do not rely on word embeddings or any other data source other than the corpora themselves. In addition, we show the utility of a lexicon-backed morphological analyzer for the MRL Modern Hebrew. We use our results on Modern Hebrew to argue that the UD community should define a UD-compatible standard for access to lexical resources, which we argue is crucial for MRLs and low resource languages in particular.

اللغة الأصليةالإنجليزيّة
عنوان منشور المضيفCoNLL 2017 - SIGNLL Conference on Computational Natural Language Learning, Proceedings of the CoNLL 2017 Shared Task
العنوان الفرعي لمنشور المضيفMultilingual Parsing from Raw Text to Universal Dependencies
ناشرAssociation for Computational Linguistics (ACL)
الصفحات253-264
عدد الصفحات12
رقم المعيار الدولي للكتب (الإلكتروني)9781945626708
المعرِّفات الرقمية للأشياء
حالة النشرنُشِر - 2017
الحدث2017 SIGNLL Conference on Computational Natural Language Learning- CoNLL Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies, CoNLL 2017 - Vancouver, كندا
المدة: ٣ أغسطس ٢٠١٧٤ أغسطس ٢٠١٧

سلسلة المنشورات

الاسمCoNLL 2017 - SIGNLL Conference on Computational Natural Language Learning, Proceedings of the CoNLL 2017 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies

!!Conference

!!Conference2017 SIGNLL Conference on Computational Natural Language Learning- CoNLL Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies, CoNLL 2017
الدولة/الإقليمكندا
المدينةVancouver
المدة٣/٠٨/١٧٤/٠٨/١٧

ملاحظة ببليوغرافية

Publisher Copyright:
© 2017 Association for Computational Linguistics.

بصمة

أدرس بدقة موضوعات البحث “Universal joint morph-syntactic processing: The open university of Israel’s submission to the CoNLL 2017 shared task'. فهما يشكلان معًا بصمة فريدة.

قم بذكر هذا