The Power of Subsampling in Submodular Maximization

Christopher Harshaw, Ehsan Kazemi, Moran Feldman, Amin Karbasi

نتاج البحث: نشر في مجلةمقالةمراجعة النظراء

ملخص

We propose subsampling as a unified algorithmic technique for submodular maximization in centralized and online settings. The idea is simple: independently sample elements from the ground set and use simple combinatorial techniques (such as greedy or local search) on these sampled elements. We show that this approach leads to optimal/state-of-the-art results despite being much simpler than existing methods. In the usual off-line setting, we present SAMPLEGREEDY, which obtains a (p + 2 + o(1))-approximation for maximizing a submodular function subject to a p-extendible system using O(n + nk=p) evaluation and feasibility queries, where k is the size of the largest feasible set. The approximation ratio improves to p + 1 and p for monotone submodular and linear objectives, respectively. In the streaming setting, we present SAMPLE-STREAMING, which obtains a (4p + 2 − o(1))-approximation for maximizing a submodular function subject to a p-matchoid using O(k) memory and O(km=p) evaluation and feasibility queries per element, and m is the number of matroids defining the p-matchoid. The approximation ratio improves to 4p for monotone submodular objectives. We empirically demonstrate the effectiveness of our algorithms on video summarization, location summarization, and movie recommendation tasks.

اللغة الأصليةالإنجليزيّة
رقم المقال2
الصفحات (من إلى)1365-1393
عدد الصفحات29
دوريةMathematics of Operations Research
مستوى الصوت47
رقم الإصدار2
تاريخ مبكر على الإنترنت13 أكتوبر 2021
المعرِّفات الرقمية للأشياء
حالة النشرنُشِر - مايو 2022
منشور خارجيًانعم

ملاحظة ببليوغرافية

Publisher Copyright:
© 2021 INFORMS

بصمة

أدرس بدقة موضوعات البحث “The Power of Subsampling in Submodular Maximization'. فهما يشكلان معًا بصمة فريدة.

قم بذكر هذا