ملخص
Standard planet evolution models of super-Earths assume that the terrestrial part (hereafter core) is cooling
as fast as the envelope. But several works show that
core heat transport may be much slower [1]. Slow core
cooling by conduction and/or high-viscosity convection, leads to a cooling timescale of billions of years,
which overlaps with the regime of super-Earth observation data. In addition, it can become dependent on
initial conditions.
We calculate the thermal evolution of the core simultaneously with the evolution of the envelope. We
find that planet formation history and core thermal
evolution can have a substantial and long term effect
on planet radius and cannot be neglected in evolutionary calculations of super-Earth planets. We present the
contribution of this effects to the mass-radius relation
of super-Earth, and the implications on the interpretation of observation data.
as fast as the envelope. But several works show that
core heat transport may be much slower [1]. Slow core
cooling by conduction and/or high-viscosity convection, leads to a cooling timescale of billions of years,
which overlaps with the regime of super-Earth observation data. In addition, it can become dependent on
initial conditions.
We calculate the thermal evolution of the core simultaneously with the evolution of the envelope. We
find that planet formation history and core thermal
evolution can have a substantial and long term effect
on planet radius and cannot be neglected in evolutionary calculations of super-Earth planets. We present the
contribution of this effects to the mass-radius relation
of super-Earth, and the implications on the interpretation of observation data.
اللغة الأصلية | إنجليزيّة أمريكيّة |
---|---|
المعرِّفات الرقمية للأشياء | |
حالة النشر | نُشِر - 2017 |
منشور خارجيًا | نعم |
الحدث | European Planetary Science Congress 2017 - Riga, لاتفيا المدة: ١٧ سبتمبر ٢٠١٧ → … https://www.epsc2017.eu/ |
!!Conference
!!Conference | European Planetary Science Congress 2017 |
---|---|
الدولة/الإقليم | لاتفيا |
المدينة | Riga |
المدة | ١٧/٠٩/١٧ → … |
عنوان الإنترنت |