The one-shot similarity kernel

Lior Wolf, Tal Hassner, Yaniv Taigman

نتاج البحث: فصل من :كتاب / تقرير / مؤتمرمنشور من مؤتمرمراجعة النظراء

ملخص

The One-Shot similarity measure has recently been introduced in the context of face recognition where it was used to produce state-of-the-art results. Given two vectors, their One-Shot similarity score reflects the likelihood of each vector belonging in the same class as the other vector and not in a class defined by a fixed set of "negative" examples. The potential of this approach has thus far been largely unexplored. In this paper we analyze the One-Shot score and show that: (1) when using a version of LDA as the underlying classifier, this score is a Conditionally Positive Definite kernel and may be used within kernel-methods (e.g., SVM), (2) it can be efficiently computed, and (3) that it is effective as an underlying mechanism for image representation. We further demonstrate the effectiveness of the One-Shot similarity score in a number of applications including multiclass identification and descriptor generation.

اللغة الأصليةالإنجليزيّة
عنوان منشور المضيف2009 IEEE 12th International Conference on Computer Vision, ICCV 2009
الصفحات897-902
عدد الصفحات6
المعرِّفات الرقمية للأشياء
حالة النشرنُشِر - 2009
الحدث12th International Conference on Computer Vision, ICCV 2009 - Kyoto, اليابان
المدة: ٢٩ سبتمبر ٢٠٠٩٢ أكتوبر ٢٠٠٩

سلسلة المنشورات

الاسمProceedings of the IEEE International Conference on Computer Vision

!!Conference

!!Conference12th International Conference on Computer Vision, ICCV 2009
الدولة/الإقليماليابان
المدينةKyoto
المدة٢٩/٠٩/٠٩٢/١٠/٠٩

بصمة

أدرس بدقة موضوعات البحث “The one-shot similarity kernel'. فهما يشكلان معًا بصمة فريدة.

قم بذكر هذا