The natural language programming (NLPRO) project: Turning text into executable code

Reut Tsarfaty

نتاج البحث: نشر في مجلةمقالة من مؤنمرمراجعة النظراء


In this paper we present the natural language programming (NLPRO) project (via ERC-StG-2015 grant 677352), where we strive to automatically translate requirements documents directly into the executable code of the systems they describe. To achieve this, we embrace the ambiguity of NL requirements and define a three-fold research agenda wherein we (i) formalize text-to-code translation as a structure prediction task, (ii) propose a formal semantic representation in terms of Live Sequence Charts (LSCs), and (iii) develop and comparatively evaluate novel sentence-based vs. discourse-based models for semantic parsing of requirements documents, and test their accuracy on various case studies. The empirical results of our first research cycle show that the discourse-based models consistently outperform the sentence-based models in constructing a system that reflects the requirements in the document. We conjecture that the formal representation of LSCs, the joint sentence-discourse modeling strategy, and the statistical learning component, are key ingredients for effectively tackling the NLPRO long-standing challenge.

اللغة الأصليةالإنجليزيّة
دوريةCEUR Workshop Proceedings
مستوى الصوت2075
حالة النشرنُشِر - 2018
الحدث24th Joint International Conference on Requirements Engineering: Foundation for Software Quality Workshops, Doctoral Symposium, REFSQ-JP 2018 - Utrecht, هولندا
المدة: ١٩ مارس ٢٠١٨ → …

ملاحظة ببليوغرافية

Publisher Copyright:
Copyright c 2018 by the paper's authors.


أدرس بدقة موضوعات البحث “The natural language programming (NLPRO) project: Turning text into executable code'. فهما يشكلان معًا بصمة فريدة.

قم بذكر هذا