The Maximal Number of 3-Term Arithmetic Progressions in Finite Sets in Different Geometries

Itai Benjamini, Shoni Gilboa

نتاج البحث: نشر في مجلةمقالةمراجعة النظراء

ملخص

Green and Sisask showed that the maximal number of 3-term arithmetic progressions in n-element sets of integers is ⌈ n2/ 2 ⌉ ; it is easy to see that the same holds if the set of integers is replaced by the real line or by any Euclidean space. We study this problem in general metric spaces, where a triple (a, b, c) of points in a metric space is considered a 3-term arithmetic progression if d(a, b) = d(b, c) = d(a, c) / 2. In particular, we show that the result of Green and Sisask extends to any Cartan–Hadamard manifold (in particular, to the hyperbolic spaces), but does not hold in spherical geometry or in the r-regular tree, for any r≥ 3.

اللغة الأصليةالإنجليزيّة
الصفحات (من إلى)543-567
عدد الصفحات25
دوريةDiscrete and Computational Geometry
مستوى الصوت69
رقم الإصدار2
المعرِّفات الرقمية للأشياء
حالة النشرنُشِر - 4 فبراير 2022

ملاحظة ببليوغرافية

Publisher Copyright:
© 2022, The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.

بصمة

أدرس بدقة موضوعات البحث “The Maximal Number of 3-Term Arithmetic Progressions in Finite Sets in Different Geometries'. فهما يشكلان معًا بصمة فريدة.

قم بذكر هذا