The fundamental theorems of affine and projective geometry revisited

Shiri Artstein-Avidan, Boaz A. Slomka

نتاج البحث: نشر في مجلةمقالةمراجعة النظراء


The fundamental theorem of affine geometry is a classical and useful result. For finite-dimensional real vector spaces, the theorem roughly states that a bijective self-mapping which maps lines to lines is affine-linear. In this paper, we prove several generalizations of this result and of its classical projective counterpart. We show that under a significant geometric relaxation of the hypotheses, namely that only lines parallel to one of a fixed set of finitely many directions are mapped to lines, an injective mapping of the space must be of a very restricted polynomial form. We also prove that under mild additional conditions the mapping is forced to be affine-additive or affine-linear. For example, we show that five directions in three-dimensional real space suffice to conclude affine-additivity. In the projective setting, we show that n + 2 fixed projective points in real n-dimensional projective space, through which all projective lines that pass are mapped to projective lines, suffice to conclude projective-linearity.

اللغة الأصليةالإنجليزيّة
رقم المقال1650059
دوريةCommunications in Contemporary Mathematics
مستوى الصوت19
رقم الإصدار5
المعرِّفات الرقمية للأشياء
حالة النشرنُشِر - 1 أكتوبر 2017
منشور خارجيًانعم

ملاحظة ببليوغرافية

Publisher Copyright:
© 2017 World Scientific Publishing Company.


أدرس بدقة موضوعات البحث “The fundamental theorems of affine and projective geometry revisited'. فهما يشكلان معًا بصمة فريدة.

قم بذكر هذا