ملخص
Accuracy, descriptor size, and the time required for extraction and matching are all important factors when selecting local image descriptors. To optimize over all these requirements, this paper presents a CUDA port for the recent Learned Arrangement of Three Patches (LATCH) binary descriptors to the GPU platform. The design of LATCH makes it well suited for GPU processing. Owing to its small size and binary nature, the GPU can further be used to efficiently match LATCH features. Taken together, this leads to breakneck descriptor extraction and matching speeds. We evaluate the trade off between these speeds and the quality of results in a feature matching intensive application. To this end, we use our proposed CUDA LATCH (CLATCH) to recover structure from motion (SfM), comparing 3D reconstructions and speed using different representations. Our results show that CLATCH provides high quality 3D reconstructions at fractions of the time required by other representations, with little, if any, loss of reconstruction quality.
اللغة الأصلية | الإنجليزيّة |
---|---|
عنوان منشور المضيف | Computer Vision – ECCV 2016 Workshops, Proceedings |
المحررون | Gang Hua, Herve Jegou |
ناشر | Springer Verlag |
الصفحات | 685-697 |
عدد الصفحات | 13 |
رقم المعيار الدولي للكتب (المطبوع) | 9783319494081 |
المعرِّفات الرقمية للأشياء | |
حالة النشر | نُشِر - 2016 |
الحدث | Computer Vision - ECCV 2016 Workshops, Proceedings - Amsterdam, هولندا المدة: ٨ أكتوبر ٢٠١٦ → ١٦ أكتوبر ٢٠١٦ |
سلسلة المنشورات
الاسم | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) |
---|---|
مستوى الصوت | 9915 LNCS |
رقم المعيار الدولي للدوريات (المطبوع) | 0302-9743 |
رقم المعيار الدولي للدوريات (الإلكتروني) | 1611-3349 |
!!Conference
!!Conference | Computer Vision - ECCV 2016 Workshops, Proceedings |
---|---|
الدولة/الإقليم | هولندا |
المدينة | Amsterdam |
المدة | ٨/١٠/١٦ → ١٦/١٠/١٦ |
ملاحظة ببليوغرافية
Publisher Copyright:© Springer International Publishing Switzerland 2016.