The action similarity labeling challenge

Orit Kliper-Gross, Tal Hassner, Lior Wolf

نتاج البحث: نشر في مجلةمقالةمراجعة النظراء

ملخص

Recognizing actions in videos is rapidly becoming a topic of much research. To facilitate the development of methods for action recognition, several video collections, along with benchmark protocols, have previously been proposed. In this paper, we present a novel video database, the "Action Similarity LAbeliNg" (ASLAN) database, along with benchmark protocols. The ASLAN set includes thousands of videos collected from the web, in over 400 complex action classes. Our benchmark protocols focus on action similarity (same/not-same), rather than action classification, and testing is performed on never-before-seen actions. We propose this data set and benchmark as a means for gaining a more principled understanding of what makes actions different or similar, rather than learning the properties of particular action classes. We present baseline results on our benchmark, and compare them to human performance. To promote further study of action similarity techniques, we make the ASLAN database, benchmarks, and descriptor encodings publicly available to the research community.

اللغة الأصليةالإنجليزيّة
رقم المقال6042884
الصفحات (من إلى)615-621
عدد الصفحات7
دوريةIEEE Transactions on Pattern Analysis and Machine Intelligence
مستوى الصوت34
رقم الإصدار3
المعرِّفات الرقمية للأشياء
حالة النشرنُشِر - 2012

بصمة

أدرس بدقة موضوعات البحث “The action similarity labeling challenge'. فهما يشكلان معًا بصمة فريدة.

قم بذكر هذا