Texture instance similarity via dense correspondences

Tal Hassner, Gilad Saban, Lior Wolf

نتاج البحث: فصل من :كتاب / تقرير / مؤتمرمنشور من مؤتمرمراجعة النظراء

ملخص

This paper concerns the task of evaluating the similarity of textures instances: Rather than discriminating between different texture classes, our goal is to identify when two images display the same texture instance. To address this problem, we propose an approach inspired by alignment based recognition theories. We offer a pixel-based method, employing a robust, dense correspondence estimation engine, applied to an efficient, novel representation, to match the pixels of two texture photos. We describe means for quantifying the quality of these matches, considering in particular the quality of the flow established between the two images. These quality measures are effectively combined into similarity scores by using standard linear SVM classifiers. By relying on a general, alignment based approach our method can be applied to different problem domains (different texture classes) with little modification. We demonstrate this by reporting state-of-the-art results on benchmarks for fingerprint recognition and two new benchmarks for texture-based animal identification.

اللغة الأصليةالإنجليزيّة
عنوان منشور المضيف2016 IEEE Winter Conference on Applications of Computer Vision, WACV 2016
ناشرInstitute of Electrical and Electronics Engineers Inc.
رقم المعيار الدولي للكتب (الإلكتروني)9781509006410
المعرِّفات الرقمية للأشياء
حالة النشرنُشِر - 23 مايو 2016
الحدثIEEE Winter Conference on Applications of Computer Vision, WACV 2016 - Lake Placid, الولايات المتّحدة
المدة: ٧ مارس ٢٠١٦١٠ مارس ٢٠١٦

سلسلة المنشورات

الاسم2016 IEEE Winter Conference on Applications of Computer Vision, WACV 2016

!!Conference

!!ConferenceIEEE Winter Conference on Applications of Computer Vision, WACV 2016
الدولة/الإقليمالولايات المتّحدة
المدينةLake Placid
المدة٧/٠٣/١٦١٠/٠٣/١٦

ملاحظة ببليوغرافية

Publisher Copyright:
© 2016 IEEE.

بصمة

أدرس بدقة موضوعات البحث “Texture instance similarity via dense correspondences'. فهما يشكلان معًا بصمة فريدة.

قم بذكر هذا