Submodular Maximization in Clean Linear Time

Wenxin Li, Moran Feldman, Ehsan Kazemi, Amin Karbasi

نتاج البحث: فصل من :كتاب / تقرير / مؤتمرمنشور من مؤتمرمراجعة النظراء

ملخص

In this paper, we provide the first deterministic algorithm that achieves 1/2-approximation for monotone submodular maximization subject to a knapsack constraint, while making a number of queries that scales only linearly with the size of the ground set n. Moreover, our result automatically paves the way for developing a linear-time deterministic algorithm that achieves the tight 1 − 1/e approximation guarantee for monotone submodular maximization under a cardinality (size) constraint. To complement our positive results, we also show strong information-theoretic lower bounds. More specifically, we show that when the maximum cardinality allowed for a solution is constant, no deterministic or randomized algorithm making a sub-linear number of function evaluations can guarantee any constant approximation ratio. Furthermore, when the constraint allows the selection of a constant fraction of the ground set, we show that any algorithm making fewer than Ω(n/log(n)) function evaluations cannot perform better than an algorithm that simply outputs a uniformly random subset of the ground set of the right size. We extend our results to the general case of maximizing a monotone submodular function subject to the intersection of a p-set system and multiple knapsack constraints. Finally, we evaluate the performance of our algorithms on multiple real-life applications, including movie recommendation, location summarization, Twitter text summarization, and video summarization.

اللغة الأصليةالإنجليزيّة
عنوان منشور المضيفAdvances in Neural Information Processing Systems 35 - 36th Conference on Neural Information Processing Systems, NeurIPS 2022
المحررونS. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, A. Oh
ناشرNeural information processing systems foundation
رقم المعيار الدولي للكتب (الإلكتروني)9781713871088
حالة النشرنُشِر - 2022
منشور خارجيًانعم
الحدث36th Conference on Neural Information Processing Systems, NeurIPS 2022 - New Orleans, الولايات المتّحدة
المدة: ٢٨ نوفمبر ٢٠٢٢٩ ديسمبر ٢٠٢٢

سلسلة المنشورات

الاسمAdvances in Neural Information Processing Systems
مستوى الصوت35
رقم المعيار الدولي للدوريات (المطبوع)1049-5258

!!Conference

!!Conference36th Conference on Neural Information Processing Systems, NeurIPS 2022
الدولة/الإقليمالولايات المتّحدة
المدينةNew Orleans
المدة٢٨/١١/٢٢٩/١٢/٢٢

ملاحظة ببليوغرافية

Publisher Copyright:
© 2022 Neural information processing systems foundation. All rights reserved.

بصمة

أدرس بدقة موضوعات البحث “Submodular Maximization in Clean Linear Time'. فهما يشكلان معًا بصمة فريدة.

قم بذكر هذا