ملخص
We introduce Stochastic Integrated Explanations (SIX) - a general method for explaining predictions made by vision models. SIX employs stochastic integration on the internal representations across different network layers, producing explanation maps at various scales. The primary innovation of SIX is the introduction of randomness to the integration process by modeling the baseline representation as a random tensor. Through iterative sampling from the baseline distribution, SIX generates a diverse set of explanation maps, allowing the selection of the best-performing map based on a specific metric of interest. Extensive evaluations on various model architectures showcase the superior performance of SIX compared to state-of-the-art explanation methods, affirming its effectiveness across multiple metrics. Our code is available at: https://github.com/six-icdm/six
اللغة الأصلية | الإنجليزيّة |
---|---|
عنوان منشور المضيف | Proceedings - 23rd IEEE International Conference on Data Mining, ICDM 2023 |
المحررون | Guihai Chen, Latifur Khan, Xiaofeng Gao, Meikang Qiu, Witold Pedrycz, Xindong Wu |
ناشر | Institute of Electrical and Electronics Engineers Inc. |
الصفحات | 938-943 |
عدد الصفحات | 6 |
رقم المعيار الدولي للكتب (الإلكتروني) | 9798350307887 |
المعرِّفات الرقمية للأشياء | |
حالة النشر | نُشِر - 2023 |
منشور خارجيًا | نعم |
الحدث | 23rd IEEE International Conference on Data Mining, ICDM 2023 - Shanghai, الصين المدة: ١ ديسمبر ٢٠٢٣ → ٤ ديسمبر ٢٠٢٣ |
سلسلة المنشورات
الاسم | Proceedings - IEEE International Conference on Data Mining, ICDM |
---|---|
رقم المعيار الدولي للدوريات (المطبوع) | 1550-4786 |
!!Conference
!!Conference | 23rd IEEE International Conference on Data Mining, ICDM 2023 |
---|---|
الدولة/الإقليم | الصين |
المدينة | Shanghai |
المدة | ١/١٢/٢٣ → ٤/١٢/٢٣ |
ملاحظة ببليوغرافية
Publisher Copyright:© 2023 IEEE.