Similarity scores based on background samples

Lior Wolf, Tal Hassner, Yaniv Taigman

نتاج البحث: فصل من :كتاب / تقرير / مؤتمرمنشور من مؤتمرمراجعة النظراء


Evaluating the similarity of images and their descriptors by employing discriminative learners has proven itself to be an effective face recognition paradigm. In this paper we show how "background samples", that is, examples which do not belong to any of the classes being learned, may provide a significant performance boost to such face recognition systems. In particular, we make the following contributions. First, we define and evaluate the "Two-Shot Similarity" (TSS) score as an extension to the recently proposed "One-Shot Similarity" (OSS) measure. Both these measures utilize background samples to facilitate better recognition rates. Second, we examine the ranking of images most similar to a query image and employ these as a descriptor for that image. Finally, we provide results underscoring the importance of proper face alignment in automatic face recognition systems. These contributions in concert allow us to obtain a success rate of 86.83% on the Labeled Faces in the Wild (LFW) benchmark, outperforming current state-of-the-art results.

اللغة الأصليةالإنجليزيّة
عنوان منشور المضيفComputer Vision, ACCV 2009 - 9th Asian Conference on Computer Vision, Revised Selected Papers
عدد الصفحات10
طبعةPART 2
المعرِّفات الرقمية للأشياء
حالة النشرنُشِر - 2010
الحدث9th Asian Conference on Computer Vision, ACCV 2009 - Xi'an, الصين
المدة: ٢٣ سبتمبر ٢٠٠٩٢٧ سبتمبر ٢٠٠٩

سلسلة المنشورات

الاسمLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
الرقمPART 2
مستوى الصوت5995 LNCS
رقم المعيار الدولي للدوريات (المطبوع)0302-9743
رقم المعيار الدولي للدوريات (الإلكتروني)1611-3349


!!Conference9th Asian Conference on Computer Vision, ACCV 2009


أدرس بدقة موضوعات البحث “Similarity scores based on background samples'. فهما يشكلان معًا بصمة فريدة.

قم بذكر هذا