ملخص
Time-Series clustering is an important and challenging problem in data mining that is used to gain an insight into the mechanism that generate the time series. Large volumes of time series sequences appear in almost every fields including astronomy, biology, meteorology, medicine, finance, robotics, engineering and others. With the increase of time series data availability and volume, many time series clustering algorithms have been proposed to extract valuable information. The Time Series Clustering algorithms can organized into three main groups depending upon whether they work directly on raw data, with features extracted from data or with model built to best reflect the data. In this article, we present a novel algorithm, SIFCM-Shape, for clustering correlated time series. The algorithm presented in this paper is based on K-Shape and Fuzzy c-Shape time series clustering algorithms. SIFCM-Shape algorithm improves K-Shape and Fuzzy c-Shape by adding a fuzzy membership degree that incorporate into clustering process. Moreover it also takes into account the correlation between time series. Hence the potential is that the clustering results using this method are expected to be more accurate for related time-series. We evaluated the algorithm on UCR real time series datasets and compare it between K-Shape and Fuzzy C-shape. Numerical experiments on 48 real time series data sets show that the new algorithm outperforms state-of-the-art shape-based clustering algorithms in terms of accuracy.
اللغة الأصلية | الإنجليزيّة |
---|---|
عنوان منشور المضيف | Intelligent Systems and Applications - Proceedings of the 2021 Intelligent Systems Conference IntelliSys |
المحررون | Kohei Arai |
ناشر | Springer Science and Business Media Deutschland GmbH |
الصفحات | 404-418 |
عدد الصفحات | 15 |
رقم المعيار الدولي للكتب (المطبوع) | 9783030821951 |
المعرِّفات الرقمية للأشياء | |
حالة النشر | نُشِر - 2021 |
الحدث | Intelligent Systems Conference, IntelliSys 2021 - Virtual, Online المدة: ٢ سبتمبر ٢٠٢١ → ٣ سبتمبر ٢٠٢١ |
سلسلة المنشورات
الاسم | Lecture Notes in Networks and Systems |
---|---|
مستوى الصوت | 295 |
رقم المعيار الدولي للدوريات (المطبوع) | 2367-3370 |
رقم المعيار الدولي للدوريات (الإلكتروني) | 2367-3389 |
!!Conference
!!Conference | Intelligent Systems Conference, IntelliSys 2021 |
---|---|
المدينة | Virtual, Online |
المدة | ٢/٠٩/٢١ → ٣/٠٩/٢١ |
ملاحظة ببليوغرافية
Publisher Copyright:© 2022, The Author(s), under exclusive license to Springer Nature Switzerland AG.