Short-term prediction of the attenuation in a commercial microwave link using LSTM-based RNN

Dror Jacoby, Jonatan Ostrometzky, Hagit Messer

نتاج البحث: فصل من :كتاب / تقرير / مؤتمرمنشور من مؤتمرمراجعة النظراء

ملخص

The signals of microwave links used for wireless communications are prone to attenuation that can be significant due to rain. This attenuation may limit the capacity of the communication channel and cause irreversible damage. Accurate prediction of the attenuation opens the possibility to take appropriate actions to minimize such damage. In this paper, we present the use of the Long Short Time Memory (LSTM) machine learning method for short term prediction of the attenuation in commercial microwave links (CMLs), where only past measurements of the attenuation in a given link are used to predict future attenuation, with no side information. We demonstrate the operation of the proposed method on real-data signal level measurements of CMLs during rain events in Sweden. Moreover, this method is compared to a widely used statistical method for time series forecasting, the Auto-Regression Moving Average (ARIMA). The results show that learning patterns from previous attenuation values during rain events in a given CML are sufficient for generating accurate attenuation predictions.

اللغة الأصليةالإنجليزيّة
عنوان منشور المضيف28th European Signal Processing Conference, EUSIPCO 2020 - Proceedings
ناشرEuropean Signal Processing Conference, EUSIPCO
الصفحات1628-1632
عدد الصفحات5
رقم المعيار الدولي للكتب (الإلكتروني)9789082797053
المعرِّفات الرقمية للأشياء
حالة النشرنُشِر - 24 يناير 2021
منشور خارجيًانعم
الحدث28th European Signal Processing Conference, EUSIPCO 2020 - Amsterdam, هولندا
المدة: ٢٤ أغسطس ٢٠٢٠٢٨ أغسطس ٢٠٢٠

سلسلة المنشورات

الاسمEuropean Signal Processing Conference
مستوى الصوت2021-January
رقم المعيار الدولي للدوريات (المطبوع)2219-5491

!!Conference

!!Conference28th European Signal Processing Conference, EUSIPCO 2020
الدولة/الإقليمهولندا
المدينةAmsterdam
المدة٢٤/٠٨/٢٠٢٨/٠٨/٢٠

ملاحظة ببليوغرافية

Publisher Copyright:
© 2021 European Signal Processing Conference, EUSIPCO. All rights reserved.

بصمة

أدرس بدقة موضوعات البحث “Short-term prediction of the attenuation in a commercial microwave link using LSTM-based RNN'. فهما يشكلان معًا بصمة فريدة.

قم بذكر هذا