ملخص
We present a novel model for the problem of ranking a collection of documents according to their semantic similarity to a source (query) document. While the problem of document-to-document similarity ranking has been studied, most modern methods are limited to relatively short documents or rely on the existence of “ground-truth” similarity labels. Yet, in most common real-world cases, similarity ranking is an unsupervised problem as similarity labels are unavailable. Moreover, an ideal model should not be restricted by documents' length. Hence, we introduce SDR, a self-supervised method for document similarity that can be applied to documents of arbitrary length. Importantly, SDR can be effectively applied to extremely long documents, exceeding the 4, 096 maximal token limit of Longformer. Extensive evaluations on large documents datasets show that SDR significantly outperforms its alternatives across all metrics. To accelerate future research on unlabeled long document similarity ranking, and as an additional contribution to the community, we herein publish two human-annotated test-sets of long documents similarity evaluation. The SDR code and datasets are publicly available.
اللغة الأصلية | الإنجليزيّة |
---|---|
عنوان منشور المضيف | Findings of the Association for Computational Linguistics |
العنوان الفرعي لمنشور المضيف | ACL-IJCNLP 2021 |
المحررون | Chengqing Zong, Fei Xia, Wenjie Li, Roberto Navigli |
ناشر | Association for Computational Linguistics (ACL) |
الصفحات | 3088-3098 |
عدد الصفحات | 11 |
رقم المعيار الدولي للكتب (الإلكتروني) | 9781954085541 |
حالة النشر | نُشِر - 2021 |
منشور خارجيًا | نعم |
الحدث | Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021 - Virtual, Online المدة: ١ أغسطس ٢٠٢١ → ٦ أغسطس ٢٠٢١ |
سلسلة المنشورات
الاسم | Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021 |
---|
!!Conference
!!Conference | Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021 |
---|---|
المدينة | Virtual, Online |
المدة | ١/٠٨/٢١ → ٦/٠٨/٢١ |
ملاحظة ببليوغرافية
Publisher Copyright:© 2021 Association for Computational Linguistics