Self-Supervised Document Similarity Ranking via Contextualized Language Models and Hierarchical Inference

Dvir Ginzburg, Itzik Malkiel, Oren Barkan, Avi Caciularu, Noam Koenigstein

نتاج البحث: فصل من :كتاب / تقرير / مؤتمرمنشور من مؤتمرمراجعة النظراء

ملخص

We present a novel model for the problem of ranking a collection of documents according to their semantic similarity to a source (query) document. While the problem of document-to-document similarity ranking has been studied, most modern methods are limited to relatively short documents or rely on the existence of “ground-truth” similarity labels. Yet, in most common real-world cases, similarity ranking is an unsupervised problem as similarity labels are unavailable. Moreover, an ideal model should not be restricted by documents' length. Hence, we introduce SDR, a self-supervised method for document similarity that can be applied to documents of arbitrary length. Importantly, SDR can be effectively applied to extremely long documents, exceeding the 4, 096 maximal token limit of Longformer. Extensive evaluations on large documents datasets show that SDR significantly outperforms its alternatives across all metrics. To accelerate future research on unlabeled long document similarity ranking, and as an additional contribution to the community, we herein publish two human-annotated test-sets of long documents similarity evaluation. The SDR code and datasets are publicly available.

اللغة الأصليةالإنجليزيّة
عنوان منشور المضيفFindings of the Association for Computational Linguistics
العنوان الفرعي لمنشور المضيفACL-IJCNLP 2021
المحررونChengqing Zong, Fei Xia, Wenjie Li, Roberto Navigli
ناشرAssociation for Computational Linguistics (ACL)
الصفحات3088-3098
عدد الصفحات11
رقم المعيار الدولي للكتب (الإلكتروني)9781954085541
حالة النشرنُشِر - 2021
منشور خارجيًانعم
الحدثFindings of the Association for Computational Linguistics: ACL-IJCNLP 2021 - Virtual, Online
المدة: ١ أغسطس ٢٠٢١٦ أغسطس ٢٠٢١

سلسلة المنشورات

الاسمFindings of the Association for Computational Linguistics: ACL-IJCNLP 2021

!!Conference

!!ConferenceFindings of the Association for Computational Linguistics: ACL-IJCNLP 2021
المدينةVirtual, Online
المدة١/٠٨/٢١٦/٠٨/٢١

ملاحظة ببليوغرافية

Publisher Copyright:
© 2021 Association for Computational Linguistics

بصمة

أدرس بدقة موضوعات البحث “Self-Supervised Document Similarity Ranking via Contextualized Language Models and Hierarchical Inference'. فهما يشكلان معًا بصمة فريدة.

قم بذكر هذا