Revised LOFAR upper limits on the 21-cm signal power spectrum at z ≈ 9.1 using machine learning and gaussian process regression

Anshuman Acharya, Florent Mertens, Benedetta Ciardi, Raghunath Ghara, Léon V.E. Koopmans, Saleem Zaroubi

نتاج البحث: نشر في مجلةمقالةمراجعة النظراء

ملخص

The use of Gaussian Process Regression (GPR) for foregrounds mitigation in data collected by the LOw-Frequency ARray (LOFAR) to measure the high-redshift 21-cm signal power spectrum has been shown to have issues of signal loss when the 21-cm signal covariance is misestimated. To address this problem, we have recently introduced covariance kernels obtained by using a Machine Learning based Variational Auto-Encoder (VAE) algorithm in combination with simulations of the 21-cm signal. In this work, we apply this framework to 141 h (nights) of LOFAR data at, and report revised upper limits of the 21-cm signal power spectrum. Overall, we agree with past results reporting a 2- upper limit of at. Further, the VAE-based kernel has a smaller correlation with the systematic excess noise, and the overall GPR-based approach is shown to be a good model for the data. Assuming an accurate bias correction for the excess noise, we report a 2- upper limit of at. However, we still caution to take the more conservative approach to jointly report the upper limits of the excess noise and the 21-cm signal components.

اللغة الأصليةالإنجليزيّة
الصفحات (من إلى)L30-L34
دوريةMonthly Notices of the Royal Astronomical Society: Letters
مستوى الصوت534
رقم الإصدار1
المعرِّفات الرقمية للأشياء
حالة النشرنُشِر - 7 أغسطس 2024

ملاحظة ببليوغرافية

Publisher Copyright:
© 2024 2024 The Author(s). Published by Oxford University Press on behalf of Royal Astronomical Society.

بصمة

أدرس بدقة موضوعات البحث “Revised LOFAR upper limits on the 21-cm signal power spectrum at z ≈ 9.1 using machine learning and gaussian process regression'. فهما يشكلان معًا بصمة فريدة.

قم بذكر هذا