Reverse Engineering of Generative Models: Inferring Model Hyperparameters From Generated Images

Vishal Asnani, Xi Yin, Tal Hassner, Xiaoming Liu

نتاج البحث: نشر في مجلةمقالةمراجعة النظراء


State-of-the-art (SOTA) Generative Models (GMs) can synthesize photo-realistic images that are hard for humans to distinguish from genuine photos. Identifying and understanding manipulated media are crucial to mitigate the social concerns on the potential misuse of GMs. We propose to perform reverse engineering of GMs to infer model hyperparameters from the images generated by these models. We define a novel problem, 'model parsing', as estimating GM network architectures and training loss functions by examining their generated images - a task seemingly impossible for human beings. To tackle this problem, we propose a framework with two components: a Fingerprint Estimation Network (FEN), which estimates a GM fingerprint from a generated image by training with four constraints to encourage the fingerprint to have desired properties, and a Parsing Network (PN), which predicts network architecture and loss functions from the estimated fingerprints. To evaluate our approach, we collect a fake image dataset with 100 K images generated by 116 different GMs. Extensive experiments show encouraging results in parsing the hyperparameters of the unseen models. Finally, our fingerprint estimation can be leveraged for deepfake detection and image attribution, as we show by reporting SOTA results on both the deepfake detection (Celeb-DF) and image attribution benchmarks.

اللغة الأصليةالإنجليزيّة
الصفحات (من إلى)15477-15493
عدد الصفحات17
دوريةIEEE Transactions on Pattern Analysis and Machine Intelligence
مستوى الصوت45
رقم الإصدار12
المعرِّفات الرقمية للأشياء
حالة النشرنُشِر - 1 ديسمبر 2023

ملاحظة ببليوغرافية

Publisher Copyright:
© 1979-2012 IEEE.


أدرس بدقة موضوعات البحث “Reverse Engineering of Generative Models: Inferring Model Hyperparameters From Generated Images'. فهما يشكلان معًا بصمة فريدة.

قم بذكر هذا