ملخص
We present Variational Bayesian Network (VBN) - a novel Bayesian entity representation learning model that utilizes hierarchical and relational side information and is particularly useful for modeling entities in the "long-tail'', where the data is scarce. VBN provides better modeling for long-tail entities via two complementary mechanisms: First, VBN employs informative hierarchical priors that enable information propagation between entities sharing common ancestors. Additionally, VBN models explicit relations between entities that enforce complementary structure and consistency, guiding the learned representations towards a more meaningful arrangement in space. Second, VBN represents entities by densities (rather than vectors), hence modeling uncertainty that plays a complementary role in coping with data scarcity. Finally, we propose a scalable Variational Bayes optimization algorithm that enables fast approximate Bayesian inference. We evaluate the effectiveness of VBN on linguistic, recommendations, and medical inference tasks. Our findings show that VBN outperforms other existing methods across multiple datasets, and especially in the long-tail.
اللغة الأصلية | الإنجليزيّة |
---|---|
عنوان منشور المضيف | CIKM 2021 - Proceedings of the 30th ACM International Conference on Information and Knowledge Management |
ناشر | Association for Computing Machinery |
الصفحات | 78-88 |
عدد الصفحات | 11 |
رقم المعيار الدولي للكتب (الإلكتروني) | 9781450384469 |
المعرِّفات الرقمية للأشياء | |
حالة النشر | نُشِر - 26 أكتوبر 2021 |
الحدث | 30th ACM International Conference on Information and Knowledge Management, CIKM 2021 - Virtual, Online, أستراليا المدة: ١ نوفمبر ٢٠٢١ → ٥ نوفمبر ٢٠٢١ |
سلسلة المنشورات
الاسم | International Conference on Information and Knowledge Management, Proceedings |
---|
!!Conference
!!Conference | 30th ACM International Conference on Information and Knowledge Management, CIKM 2021 |
---|---|
الدولة/الإقليم | أستراليا |
المدينة | Virtual, Online |
المدة | ١/١١/٢١ → ٥/١١/٢١ |
ملاحظة ببليوغرافية
Publisher Copyright:© 2021 ACM.