TY - JOUR
T1 - Ramsey partitions and proximity data structures
AU - Mendel, Manor
AU - Naor, Assaf
PY - 2007
Y1 - 2007
N2 - This paper addresses two problems lying at the intersection of geometric analysis and theoretical computer science: The non-linear isomorphic Dvoretzky theorem and the design of good approximate distance oracles for large distortion. We introduce the notion of Ramsey partitions of a finite metric space, and show that the existence of good Ramsey partitions implies a solution to the metric Ramsey problem for large distortion (also known as the non-linear version of the isomorphic Dvoretzky theorem, as introduced by Bourgain, Figiel, and Milman in [8]). We then proceed to construct optimal Ramsey partitions, and use them to show that for every ε ∈ (0, 1), every n-point metric space has a subset of size n1-ε which embeds into Hubert space with distortion O(1/ε). This result is best possible and improves part of the metric Ramsey theorem of Bartal, Linial, Mendel and Naor [5], in addition to considerably simplifying its proof. We use our new Ramsey partitions to design approximate distance oracles with a universal constant query time, closing a gap left open by Thorup and Zwick in [32]. Namely, we show that for every n-point metric space X, and k ≥ 1, there exists an O(k)-approximate distance oracle whose storage requirement is 0(n1+1/k), and whose query time is a universal constant. We also discuss applications of Ramsey partitions to various other geometric data structure problems, such as the design of efficient data structures for approximate ranking.
AB - This paper addresses two problems lying at the intersection of geometric analysis and theoretical computer science: The non-linear isomorphic Dvoretzky theorem and the design of good approximate distance oracles for large distortion. We introduce the notion of Ramsey partitions of a finite metric space, and show that the existence of good Ramsey partitions implies a solution to the metric Ramsey problem for large distortion (also known as the non-linear version of the isomorphic Dvoretzky theorem, as introduced by Bourgain, Figiel, and Milman in [8]). We then proceed to construct optimal Ramsey partitions, and use them to show that for every ε ∈ (0, 1), every n-point metric space has a subset of size n1-ε which embeds into Hubert space with distortion O(1/ε). This result is best possible and improves part of the metric Ramsey theorem of Bartal, Linial, Mendel and Naor [5], in addition to considerably simplifying its proof. We use our new Ramsey partitions to design approximate distance oracles with a universal constant query time, closing a gap left open by Thorup and Zwick in [32]. Namely, we show that for every n-point metric space X, and k ≥ 1, there exists an O(k)-approximate distance oracle whose storage requirement is 0(n1+1/k), and whose query time is a universal constant. We also discuss applications of Ramsey partitions to various other geometric data structure problems, such as the design of efficient data structures for approximate ranking.
KW - Approximate distance oracle
KW - Metric Ramsey theorem
KW - Proximity data structure
UR - http://www.scopus.com/inward/record.url?scp=33846646989&partnerID=8YFLogxK
U2 - 10.4171/JEMS/79
DO - 10.4171/JEMS/79
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:33846646989
SN - 1435-9855
VL - 9
SP - 253
EP - 275
JO - Journal of the European Mathematical Society
JF - Journal of the European Mathematical Society
IS - 2
ER -