Ramsey partitions and proximity data structures

Manor Mendel, Assaf Naor

نتاج البحث: فصل من :كتاب / تقرير / مؤتمرمنشور من مؤتمرمراجعة النظراء

ملخص

This paper addresses the non-linear isomorphic Dvoretzky theorem and the design of good approximate distance oracles for large distortion. We introduce and construct optimal Ramsey partitions, and use them to show that for every ε ∈ (0,1), any n-point metric space has a subset of size n 1-ε which embeds into Hilbert space with distortion 0(1/ε). This result is best possible and improves part of the metric Ramsey theorem of Bartal, Linial, Mendel and Naor [5], in addition to considerably simplifying its proof. We use our new Ramsey partitions to design approximate distance oracles with a universal constant query time, closing a gap left open by Thorup and Zwick in [26]. Namely, we show that for any n point metric space X, and k > 1, there exists an O (k)-approximate distance oracle whose storage requirement is O(n1+1/k), and whose query time is a universal constant. We also discuss applications to various other geometric data structures, and the relation to well separated pair decompositions.

اللغة الأصليةالإنجليزيّة
عنوان منشور المضيف47th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2006
الصفحات109-118
عدد الصفحات10
المعرِّفات الرقمية للأشياء
حالة النشرنُشِر - 2006
الحدث47th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2006 - Berkeley, CA, الولايات المتّحدة
المدة: ٢١ أكتوبر ٢٠٠٦٢٤ أكتوبر ٢٠٠٦

سلسلة المنشورات

الاسمProceedings - Annual IEEE Symposium on Foundations of Computer Science, FOCS
رقم المعيار الدولي للدوريات (المطبوع)0272-5428

!!Conference

!!Conference47th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2006
الدولة/الإقليمالولايات المتّحدة
المدينةBerkeley, CA
المدة٢١/١٠/٠٦٢٤/١٠/٠٦

بصمة

أدرس بدقة موضوعات البحث “Ramsey partitions and proximity data structures'. فهما يشكلان معًا بصمة فريدة.

قم بذكر هذا