pyBART: Evidence-based syntactic transformations for IE

Aryeh Tiktinsky, Yoav Goldberg, Reut Tsarfaty

نتاج البحث: فصل من :كتاب / تقرير / مؤتمرمنشور من مؤتمرمراجعة النظراء

ملخص

Syntactic dependencies can be predicted with high accuracy, and are useful for both machine-learned and pattern-based information extraction tasks. However, their utility can be improved. These syntactic dependencies are designed to accurately reflect syntactic relations, and they do not make semantic relations explicit. Therefore, these representations lack many explicit connections between content words, that would be useful for downstream applications. Proposals like English Enhanced UD improve the situation by extending universal dependency trees with additional explicit arcs. However, they are not available to Python users, and are also limited in coverage. We introduce a broad-coverage, data-driven and linguistically sound set of transformations, that makes event-structure and many lexical relations explicit. We present pyBART, an easy-to-use open-source Python library for converting English UD trees either to Enhanced UD graphs or to our representation. The library can work as a standalone package or be integrated within a spaCy NLP pipeline. When evaluated in a pattern-based relation extraction scenario, our representation results in higher extraction scores than Enhanced UD, while requiring fewer patterns.

اللغة الأصليةالإنجليزيّة
عنوان منشور المضيفACL 2020 - 58th Annual Meeting of the Association for Computational Linguistics, Proceedings of the System Demonstrations
ناشرAssociation for Computational Linguistics (ACL)
الصفحات47-55
عدد الصفحات9
رقم المعيار الدولي للكتب (الإلكتروني)9781952148040
حالة النشرنُشِر - 2020
منشور خارجيًانعم
الحدث58th Annual Meeting of the Association for Computational Linguistics, ACL 2020 - Virtual, Online, الولايات المتّحدة
المدة: ٥ يوليو ٢٠٢٠١٠ يوليو ٢٠٢٠

سلسلة المنشورات

الاسمProceedings of the Annual Meeting of the Association for Computational Linguistics
رقم المعيار الدولي للدوريات (المطبوع)0736-587X

!!Conference

!!Conference58th Annual Meeting of the Association for Computational Linguistics, ACL 2020
الدولة/الإقليمالولايات المتّحدة
المدينةVirtual, Online
المدة٥/٠٧/٢٠١٠/٠٧/٢٠

ملاحظة ببليوغرافية

Publisher Copyright:
© 2020 Association for Computational Linguistics

بصمة

أدرس بدقة موضوعات البحث “pyBART: Evidence-based syntactic transformations for IE'. فهما يشكلان معًا بصمة فريدة.

قم بذكر هذا