ملخص
Path integration methods generate attributions by integrating along a trajectory from a baseline to the input. These techniques have demonstrated considerable effectiveness in the field of explainability research. While multiple types of baselines for the path integration process have been explored in the literature, there is no consensus on the ultimate one. This work examines the performance of different baseline distributions on explainability metrics and proposes a probabilistic path integration approach where the baseline distribution is modeled as a mixture of distributions, learned for each combination of model architecture and explanation metric. Extensive evaluations on various model architectures show that our method outperforms state-of-the-art explanation methods across multiple metrics.
اللغة الأصلية | الإنجليزيّة |
---|---|
عنوان منشور المضيف | CIKM 2024 - Proceedings of the 33rd ACM International Conference on Information and Knowledge Management |
ناشر | Association for Computing Machinery |
الصفحات | 570-580 |
عدد الصفحات | 11 |
رقم المعيار الدولي للكتب (الإلكتروني) | 9798400704369 |
المعرِّفات الرقمية للأشياء | |
حالة النشر | نُشِر - 21 أكتوبر 2024 |
الحدث | 33rd ACM International Conference on Information and Knowledge Management, CIKM 2024 - Boise, الولايات المتّحدة المدة: ٢١ أكتوبر ٢٠٢٤ → ٢٥ أكتوبر ٢٠٢٤ |
سلسلة المنشورات
الاسم | International Conference on Information and Knowledge Management, Proceedings |
---|---|
رقم المعيار الدولي للدوريات (المطبوع) | 2155-0751 |
!!Conference
!!Conference | 33rd ACM International Conference on Information and Knowledge Management, CIKM 2024 |
---|---|
الدولة/الإقليم | الولايات المتّحدة |
المدينة | Boise |
المدة | ٢١/١٠/٢٤ → ٢٥/١٠/٢٤ |
ملاحظة ببليوغرافية
Publisher Copyright:© 2024 ACM.