ملخص
In this study we propose a new paradigm for solving DCOPs, whereby the agents delegate the computational task to a set of external mediators who perform the computations for them in an oblivious manner, without getting access neither to the problem inputs nor to its outputs. Specifically, we propose MD-Max-Sum, a mediated implementation of the Max-Sum algorithm. MD-Max-Sum offers topology, constraint, and decision privacy, as well as partial agent privacy. Moreover, MD-Max-Sum is collusion-secure, as long as the set of mediators has an honest majority. We evaluate the performance of MD-Max-Sum on different benchmarks. In particular, we compare its performance to PC-SyncBB, the only privacy-preserving DCOP algorithm to date that is collusion-secure, and show the significant advantages of MD-Max-Sum in terms of runtime.
اللغة الأصلية | الإنجليزيّة |
---|---|
عنوان منشور المضيف | Cyber Security, Cryptology, and Machine Learning - 6th International Symposium, CSCML 2022, Proceedings |
المحررون | Shlomi Dolev, Amnon Meisels, Jonathan Katz |
ناشر | Springer Science and Business Media Deutschland GmbH |
الصفحات | 487-498 |
عدد الصفحات | 12 |
رقم المعيار الدولي للكتب (المطبوع) | 9783031076886 |
المعرِّفات الرقمية للأشياء | |
حالة النشر | نُشِر - 2022 |
الحدث | 6th International Symposium on Cyber Security Cryptography and Machine Learning, CSCML 2022 - Beer Sheva, إسرائيل المدة: ٣٠ يونيو ٢٠٢٢ → ١ يوليو ٢٠٢٢ |
سلسلة المنشورات
الاسم | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) |
---|---|
مستوى الصوت | 13301 LNCS |
رقم المعيار الدولي للدوريات (المطبوع) | 0302-9743 |
رقم المعيار الدولي للدوريات (الإلكتروني) | 1611-3349 |
!!Conference
!!Conference | 6th International Symposium on Cyber Security Cryptography and Machine Learning, CSCML 2022 |
---|---|
الدولة/الإقليم | إسرائيل |
المدينة | Beer Sheva |
المدة | ٣٠/٠٦/٢٢ → ١/٠٧/٢٢ |
ملاحظة ببليوغرافية
Publisher Copyright:© 2022, Springer Nature Switzerland AG.