Plurality in Spatial Voting Games with Constant β

Arnold Filtser, Omrit Filtser

نتاج البحث: نشر في مجلةمقالةمراجعة النظراء

ملخص

Consider a set V of voters, represented by a multiset in a metric space (X, d). The voters have to reach a decision—a point in X. A choice p∈ X is called a β -plurality point for V, if for any other choice q∈ X it holds that |{v∈V∣β·d(p,v)≤d(q,v)}|≥|V|2 . In other words, at least half of the voters “prefer” p over q, when an extra factor of β is taken in favor of p. For β= 1 , this is equivalent to Condorcet winner, which rarely exists. The concept of β -plurality was suggested by Aronov, de Berg, Gudmundsson, and Horton [TALG 2021] as a relaxation of the Condorcet criterion. Let β(X,d)∗=sup{β∣everyfinitemultisetVinXadmitsaβ-pluralitypoint} . The parameter β determines the amount of relaxation required in order to reach a stable decision. Aronov et al. showed that for the Euclidean plane β(R2,‖·‖2)∗=32 , and more generally, for d-dimensional Euclidean space, 1d≤β(Rd,‖·‖2)∗≤32 . In this paper, we show that 0.557≤β(Rd,‖·‖2)∗ for any dimension d (notice that 1d<0.557 for any d≥ 4). In addition, we prove that for every metric space (X, d) it holds that 2-1≤β(X,d)∗ , and show that there exists a metric space for which β(X,d)∗≤12 .

اللغة الأصليةالإنجليزيّة
دوريةDiscrete and Computational Geometry
المعرِّفات الرقمية للأشياء
حالة النشراسْتُلِم/تحت الطبع - 2024

ملاحظة ببليوغرافية

Publisher Copyright:
© 2024, The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.

بصمة

أدرس بدقة موضوعات البحث “Plurality in Spatial Voting Games with Constant β'. فهما يشكلان معًا بصمة فريدة.

قم بذكر هذا