Pairwise clustering and graphical models

Noam Shental, Assaf Zomet, Tomer Hertz, Yair Weiss

نتاج البحث: فصل من :كتاب / تقرير / مؤتمرمنشور من مؤتمرمراجعة النظراء

ملخص

Significant progress in clustering has been achieved by algorithms that are based on pairwise affinities between the datapoints. In particular, spectral clustering methods have the advantage of being able to divide arbitrarily shaped clusters and are based on efficient eigenvector calculations. However, spectral methods lack a straightforward probabilistic interpretation which makes it difficult to automatically set parameters using training data. In this paper we use the previously proposed typical cut framework for pairwise clustering. We show an equivalence between calculating the typical cut and inference in an undirected graphical model. We show that for clustering problems with hundreds of datapoints exact inference may still be possible. For more complicated datasets, we show that loopy belief propagation (BP) and generalized belief propagation (GBP) can give excellent results on challenging clustering problems. We also use graphical models to derive a learning algorithm for affinity matrices based on labeled data.

اللغة الأصليةالإنجليزيّة
عنوان منشور المضيفAdvances in Neural Information Processing Systems 17 - Proceedings of the 2003 Conference, NIPS 2003
ناشرNeural information processing systems foundation
الصفحات185-192
مستوى الصوت16
رقم المعيار الدولي للكتب (المطبوع)0262201526, 9780262201520
حالة النشرنُشِر - 2004
منشور خارجيًانعم
الحدث17th Annual Conference on Neural Information Processing Systems, NIPS 2003 - Vancouver, BC, كندا
المدة: ٨ ديسمبر ٢٠٠٣١٣ ديسمبر ٢٠٠٣

سلسلة المنشورات

الاسمAdvances in Neural Information Processing Systems
رقم المعيار الدولي للدوريات (المطبوع)1049-5258

!!Conference

!!Conference17th Annual Conference on Neural Information Processing Systems, NIPS 2003
الدولة/الإقليمكندا
المدينةVancouver, BC
المدة٨/١٢/٠٣١٣/١٢/٠٣

بصمة

أدرس بدقة موضوعات البحث “Pairwise clustering and graphical models'. فهما يشكلان معًا بصمة فريدة.

قم بذكر هذا