P-SyncBB: A privacy preserving branch and bound DCOP algorithm

Tal Grinshpoun, Tamir Tassa

نتاج البحث: نشر في مجلةمقالةمراجعة النظراء

ملخص

Distributed constraint optimization problems enable the representation of many combinatorial problems that are distributed by nature. An important motivation for such problems is to preserve the privacy of the participating agents during the solving process. The present paper introduces a novel privacy-preserving branch and bound algorithm for this purpose. The proposed algorithm, P-SyncBB, preserves constraint, topology and decision privacy. The algorithm requires secure solutions to several multi-party computation problems. Consequently, appropriate novel secure protocols are devised and analyzed. An extensive experimental evaluation on different benchmarks, problem sizes, and constraint densities shows that P-SyncBB exhibits superior performance to other privacy-preserving complete DCOP algorithms.

اللغة الأصليةالإنجليزيّة
الصفحات (من إلى)621-660
عدد الصفحات40
دوريةJournal of Artificial Intelligence Research
مستوى الصوت57
المعرِّفات الرقمية للأشياء
حالة النشرنُشِر - 1 ديسمبر 2016

ملاحظة ببليوغرافية

Publisher Copyright:
© 2016 AI Access Foundation.

بصمة

أدرس بدقة موضوعات البحث “P-SyncBB: A privacy preserving branch and bound DCOP algorithm'. فهما يشكلان معًا بصمة فريدة.

قم بذكر هذا