TY - JOUR
T1 - Organic Alkalinity as an Important Constituent of Total Alkalinity and the Buffering System in River-To-Coast Transition Zones
AU - Song, Shuzhen
AU - Bellerby, Richard Garth James
AU - Wang, Zhaohui Aleck
AU - Wurgaft, Eyal
AU - Li, Daoji
N1 - Publisher Copyright:
© 2023 The Authors.
PY - 2023/8
Y1 - 2023/8
N2 - Organic acid-base species in the dissolved organic carbon pool have been shown to make an important contribution (i.e., organic alkalinity; OrgAlk) to the total alkalinity (TA) in many coastal systems. This study documents an intensive investigation of OrgAlk characteristics in the river-to-coast transition zones of six southeast Chinese rivers. OrgAlk, mainly originating from river input, accounted for an important proportion of TA (0.3%–12%) in six estuaries. Carboxylic acid groups were commonly present in all estuaries. Notable differences in the TA values (1–18 μmol kg−1) determined by several established TA measurement approaches were identified in estuaries where organic acids with pKa <5.2 were abundant. The most widely used open-cell titration method, in comparison with closed-cell titration and single-step titration, is the best approach to incorporate OrgAlk in titrated TA when the pKa values of organic acids were >5 in the study estuaries. Across our study sites, OrgAlk might modify H+ concentrations by 3%–69% (i.e., pH by 0.01–0.78) and aragonite saturation states by 1%–72%, indicating that OrgAlk can play a significant role in the coastal carbonate buffering system. It is essential to improve current TA measurement approaches to more accurately represent OrgAlk in the coastal system and assess impacts of OrgAlk on coastal carbonate chemistry.
AB - Organic acid-base species in the dissolved organic carbon pool have been shown to make an important contribution (i.e., organic alkalinity; OrgAlk) to the total alkalinity (TA) in many coastal systems. This study documents an intensive investigation of OrgAlk characteristics in the river-to-coast transition zones of six southeast Chinese rivers. OrgAlk, mainly originating from river input, accounted for an important proportion of TA (0.3%–12%) in six estuaries. Carboxylic acid groups were commonly present in all estuaries. Notable differences in the TA values (1–18 μmol kg−1) determined by several established TA measurement approaches were identified in estuaries where organic acids with pKa <5.2 were abundant. The most widely used open-cell titration method, in comparison with closed-cell titration and single-step titration, is the best approach to incorporate OrgAlk in titrated TA when the pKa values of organic acids were >5 in the study estuaries. Across our study sites, OrgAlk might modify H+ concentrations by 3%–69% (i.e., pH by 0.01–0.78) and aragonite saturation states by 1%–72%, indicating that OrgAlk can play a significant role in the coastal carbonate buffering system. It is essential to improve current TA measurement approaches to more accurately represent OrgAlk in the coastal system and assess impacts of OrgAlk on coastal carbonate chemistry.
KW - aragonite saturation state
KW - carbonate system
KW - coastal system
KW - estuaries
KW - organic alkalinity
KW - total alkalinity
UR - http://www.scopus.com/inward/record.url?scp=85167995426&partnerID=8YFLogxK
U2 - 10.1029/2022JC019270
DO - 10.1029/2022JC019270
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:85167995426
SN - 2169-9275
VL - 128
JO - Journal of Geophysical Research: Oceans
JF - Journal of Geophysical Research: Oceans
IS - 8
M1 - e2022JC019270
ER -