Optimal performance of second-order multidimensional ICA

Dana Lahat, Jean Francois Cardoso, Hagit Messer

نتاج البحث: نشر في مجلةمقالة من مؤنمرمراجعة النظراء

ملخص

Independent component analysis (ICA) and blind source separation (BSS) deal with extracting mutually-independent elements from their observed mixtures. In "classical" ICA, each component is one- dimensional in the sense that it is proportional to a column of the mixing matrix. However, this paper considers a more general setup, of multidimensional components. In terms of the underlying sources, this means that the source covariance matrix is block-diagonal rather than diagonal, so that sources belonging to the same block are correlated whereas sources belonging to different blocks are uncorrelated. These two points of view -correlated sources vs. multidimensional components- are considered in this paper. The latter offers the benefit of providing a unique decomposition. We present a novel, closed-form expression for the optimal performance of second-order ICA in the case of multidimensional elements. Our analysis is verified through numerical experiments.

اللغة الأصليةالإنجليزيّة
الصفحات (من إلى)50-57
عدد الصفحات8
دوريةLecture Notes in Computer Science
مستوى الصوت5441
المعرِّفات الرقمية للأشياء
حالة النشرنُشِر - 2009
منشور خارجيًانعم
الحدث8th International Conference on Independent Component Analysis and Signal Separation, ICA 2009 - Paraty, البرازيل
المدة: ١٥ مارس ٢٠٠٩١٨ مارس ٢٠٠٩

بصمة

أدرس بدقة موضوعات البحث “Optimal performance of second-order multidimensional ICA'. فهما يشكلان معًا بصمة فريدة.

قم بذكر هذا