ملخص
We show that for any integer n ≥ 1 and real ε > 0, the union of n arithmetic progressions with pairwise distinct differences, each of length n, contains at least c (ε)n2-ε elements, where c (ε) is a positive constant depending only on ε. This estimate is sharp in the sense that the assertion becomes invalid for ε = 0. We also obtain estimates for the "asymmetric case" where the number of progressions is distinct from their lengths.
اللغة الأصلية | الإنجليزيّة |
---|---|
الصفحات (من إلى) | 1062-1073 |
عدد الصفحات | 12 |
دورية | SIAM Journal on Discrete Mathematics |
مستوى الصوت | 28 |
رقم الإصدار | 3 |
المعرِّفات الرقمية للأشياء | |
حالة النشر | نُشِر - 2014 |
ملاحظة ببليوغرافية
Publisher Copyright:© 2014 Society for Industrial and Applied Mathematics.